<div><font color="#333300" face="楷体_gb18030">Hello, recently I am trying to do geometry optimization about my interested system using df-lmp2-f12, but it doesn't work. Moreover, the fact that none errors or hints appear in the *.out file makes it harder to find out the reason. Also, the *.log file doesn't show up.The molpro version that I am using is 2010.1. </font></div><div><font color="#333300" face="楷体_gb18030"><br></font></div><div><font color="#333300" face="楷体_gb18030">Here is the input file:</font></div><div><font color="#333300" face="楷体_gb18030"><div><div>***,Cl_4_84</div><div> memory,300,m</div></div><div><br></div><div> symmetry,nosym,noorient</div><div> geomtyp=xyz</div><div> set charge=-1</div><div> geometry={</div><div>Cl 3.399747 -9.675083 -15.102824</div><div>O 2.267451 -10.076820 -12.068528</div><div>H 2.683224 -9.644627 -12.858368</div><div>H 1.702101 -10.740681 -12.518701</div><div>O 5.106582 -7.489515 -16.771516</div><div>H 4.398635 -8.076334 -16.396565</div><div>H 5.814074 -7.625177 -16.117107</div><div>O 4.355787 -12.006299 -13.111626</div><div>H 3.894378 -11.516315 -12.394417</div><div>H 4.293782 -11.334450 -13.841591</div><div>O 1.496064 -12.136303 -14.159424</div><div>H 2.334484 -12.493499 -13.788021</div><div>H 1.861668 -11.376932 -14.674298</div><div> }</div><div><br></div><div>basis=vdz-f12</div><div>df-hf;accu,14</div><div>df-lmp2-f12,ri_basis=vdz-f12/optri,df_basis=avdz</div><div>optg,gradient=1.d-5</div><div><br></div><div>punch,Cl_4_84_opt_dflmp2f12.pun;</div><div>PUT,XYZ,Cl_4_84_opt_dflmp2f12.xyz</div><div><br></div><div>Here is the *.out file:</div><div><div><br></div><div> Primary working directories : /home/thuang/tmp</div><div> Secondary working directories : /home/thuang/tmp</div><div> Wavefunction directory : /home/thuang/wfu/</div><div> Main file repository : /home/thuang/tmp/</div><div><br></div><div> ARCHNAME : Linux/x86_64</div><div> FC : /opt/intel/composer_xe_2011_sp1.6.233/bin/intel64/ifort</div><div> FCVERSION : 12.1.0</div><div> BLASLIB : -L/opt/intel/mkl/lib/intel64 -lmkl_intel_ilp64 -lmkl_sequential -lmkl_core</div><div> id : wei</div><div><br></div><div> Nodes nprocs</div><div> node08 7</div><div> Number of processes for MPI-2 version of Molpro: nprocs(total)= 8 nprocs(compute)= 7 nprocs(helper)= 1</div><div> ga_uses_ma=false, calling ma_init with nominal heap.</div><div> GA-space will be limited to 8.0 MW (determined by -G option)</div><div><br></div><div> Using default tuning parameters: mindgm=1; mindgv=20; mindgc=4; mindgr=1; noblas=0; mincuda=1000; minvec=7</div><div> default implementation of scratch files=sf </div><div><br></div><div> ***,Cl_4_84</div><div> memory,300,m</div><div> </div><div> symmetry,nosym,noorient</div><div> geomtyp=xyz</div><div> set charge=-1</div><div> geometry={</div><div> Cl 3.399747 -9.675083 -15.102824</div><div> O 2.267451 -10.076820 -12.068528</div><div> H 2.683224 -9.644627 -12.858368</div><div> H 1.702101 -10.740681 -12.518701</div><div> O 5.106582 -7.489515 -16.771516</div><div> H 4.398635 -8.076334 -16.396565</div><div> H 5.814074 -7.625177 -16.117107</div><div> O 4.355787 -12.006299 -13.111626</div><div> H 3.894378 -11.516315 -12.394417</div><div> H 4.293782 -11.334450 -13.841591</div><div> O 1.496064 -12.136303 -14.159424</div><div> H 2.334484 -12.493499 -13.788021</div><div> H 1.861668 -11.376932 -14.674298</div><div> }</div><div> </div><div> basis=vdz-f12</div><div> df-hf;accu,14</div><div> df-lmp2-f12,ri_basis=vdz-f12/optri,df_basis=avdz</div><div> optg,gradient=1.d-5</div><div> </div><div> punch,Cl_4_84_opt_dflmp2f12.pun;</div><div> PUT,XYZ,Cl_4_84_opt_dflmp2f12.xyz</div><div> </div><div> </div><div><br></div><div> Variables initialized (665), CPU time= 0.00 sec</div><div> Commands initialized (462), CPU time= 0.01 sec, 486 directives.</div><div> Default parameters read. Elapsed time= 0.08 sec</div><div><br></div><div> Checking input...</div><div> Passed</div><div>1</div><div><br></div><div><br></div><div> *** PROGRAM SYSTEM MOLPRO ***</div><div> Copyright, University College Cardiff Consultants Limited, 2008</div><div><br></div><div> Version 2010.1 linked 14 Nov 2012 17:27:36</div><div><br></div><div><br></div><div> **********************************************************************************************************************************</div><div> LABEL * Cl_4_84 </div><div> Linux-2.6.32-279.el6.x86_64/node08(x86_64) 64 bit mpp version DATE: 18-Nov-12 TIME: 10:36:25 </div><div> **********************************************************************************************************************************</div><div><br></div><div> Patch level: 19</div><div> **********************************************************************************************************************************</div><div><br></div><div> Variable memory set to 300000000 words, buffer space 230000 words</div><div><br></div><div> SETTING GEOMTYP = XYZ</div><div> SETTING CHARGE = -1.00000000 </div><div> ZSYMEL=NOSYM</div><div> </div><div> SETTING BASIS = VDZ-F12</div><div><br></div><div><br></div><div> Recomputing integrals since basis changed</div><div><br></div><div><br></div><div> Using spherical harmonics</div><div><br></div><div> Library entry CL S cc-pVDZ-F12 selected for orbital group 1</div><div> Library entry CL P cc-pVDZ-F12 selected for orbital group 1</div><div> Library entry CL D cc-pVDZ-F12 selected for orbital group 1</div><div> Library entry O S cc-pVDZ-F12 selected for orbital group 2</div><div> Library entry O P cc-pVDZ-F12 selected for orbital group 2</div><div> Library entry O D cc-pVDZ-F12 selected for orbital group 2</div><div> Library entry H S cc-pVDZ-F12 selected for orbital group 3</div><div> Library entry H P cc-pVDZ-F12 selected for orbital group 3</div><div><br></div><div>1PROGRAM * SEWARD (Integral evaluation for generally contracted gaussian basis sets) Author: Roland Lindh, 1990</div><div><br></div><div> Geometry written to block 1 of record 700</div><div><br></div><div><br></div><div> Point group C1 </div><div><br></div><div><br></div><div><br></div><div> ATOMIC COORDINATES</div><div><br></div><div> NR ATOM CHARGE X Y Z</div><div><br></div><div> 1 CL 17.00 6.424590746 -18.283257169 -28.540201171</div><div> 2 O 8.00 4.284861406 -19.042430076 -22.806212729</div><div> 3 H 1.00 5.070558509 -18.225703670 -24.298794017</div><div> 4 H 1.00 3.216504738 -20.296945555 -23.656916411</div><div> 5 O 8.00 9.650041448 -14.153132207 -31.693572049</div><div> 6 H 1.00 8.312215502 -15.262059406 -30.985017346</div><div> 7 H 1.00 10.987007568 -14.409496234 -30.456918261</div><div> 8 O 8.00 8.231244517 -22.688616962 -24.777382278</div><div> 9 H 1.00 7.359307872 -21.762681393 -23.422053689</div><div> 10 H 1.00 8.114072048 -21.419006350 -26.156816213</div><div> 11 O 8.00 2.827151235 -22.934288918 -26.757433539</div><div> 12 H 1.00 4.411535418 -23.609291533 -26.055583584</div><div> 13 H 1.00 3.518042668 -21.499285696 -27.730404391</div><div><br></div><div> Bond lengths in Bohr (Angstrom)</div><div><br></div><div> 2-3 1.874076002 2-4 1.854424928 5-6 1.876578685 5-7 1.839161089 8-9 1.858640840</div><div> (0.991718308) (0.981319408) (0.993042671) (0.973242132) (0.983550372)</div><div><br></div><div> 8-10 1.878424466 11-12 1.859702968 11-13 1.866343350</div><div> (0.994019416) (0.984112426) (0.987626365)</div><div><br></div><div> Bond angles</div><div><br></div><div> 3- 2- 4 99.84553579 6- 5- 7 100.48559911 9- 8-10 99.75980704 12-11-13 99.23261633</div><div><br></div><div> NUCLEAR CHARGE: 57</div><div> NUMBER OF PRIMITIVE AOS: 322</div><div> NUMBER OF SYMMETRY AOS: 311</div><div> NUMBER OF CONTRACTIONS: 231 ( 231A )</div><div> NUMBER OF CORE ORBITALS: 9 ( 9A )</div><div> NUMBER OF VALENCE ORBITALS: 28 ( 28A )</div><div><br></div><div><br></div><div> NUCLEAR REPULSION ENERGY 232.54897094</div><div><br></div><div><br></div><div> Eigenvalues of metric</div><div><br></div><div> 1 0.703E-03 0.878E-03 0.898E-03 0.131E-02 0.176E-02 0.208E-02 0.213E-02 0.241E-02</div><div><br></div><div><br></div><div> OPERATOR DM FOR CENTER 0 COORDINATES: 0.000000 0.000000 0.000000</div><div><br></div><div><br></div><div> **********************************************************************************************************************************</div><div> DATASETS * FILE NREC LENGTH (MB) RECORD NAMES</div><div> 1 18 4.78 500 610 700 900 950 970 1000 129 960 1100 </div><div> VAR BASINP GEOM SYMINP ZMAT AOBASIS BASIS P2S ABASIS S </div><div> 1400 1410 1200 1210 1080 1600 1650 1700 </div><div> T V H0 H01 AOSYM SMH MOLCAS OPER </div><div><br></div><div> PROGRAMS * TOTAL INT</div><div> CPU TIMES * 0.26 0.15</div><div> REAL TIME * 17.24 SEC</div><div> DISK USED * 0.00 MB </div><div> GA USED * 0.00 MB (max) 0.00 MB (current)</div><div> **********************************************************************************************************************************</div><div><br></div><div>1PROGRAM * RHF-SCF (CLOSED SHELL) Authors: W. Meyer, H.-J. Werner</div><div><br></div><div><br></div><div> NUMBER OF ELECTRONS: 29+ 29- SPACE SYMMETRY=1 SPIN SYMMETRY=Singlet </div><div> CONVERGENCE THRESHOLDS: 1.00E-07 (Density) 1.16E-07 (Energy)</div><div> INTEGRAL THRESHOLDS: 1.00E-11 (Initial) 1.00E-11 (Final)</div><div> MAX. NUMBER OF ITERATIONS: 60</div><div> INTERPOLATION TYPE: DIIS</div><div> INTERPOLATION STEPS: 2 (START) 1 (STEP)</div><div> LEVEL SHIFTS: 0.00 (CLOSED) 0.00 (OPEN) </div><div><br></div><div><br></div><div><br></div><div> Orbital guess generated from atomic densities. Full valence occupancy: 37</div><div> </div><div> Basis set AUG-CC-PVDZ/JKFIT generated. Number of basis functions: 728 </div><div> </div><div> Coulomb and exchange fitting</div><div> Thresholds for fitting: THRAO_COUL= 1.0D-12 THRAO_EXCH= 1.0D-12 THRMO= 1.0D-11 THRPROD= 1.0D-11 THRASM= 1.0D-11</div><div> THR2HLF= 1.0D-11</div><div><br></div><div> Molecular orbital dump at record 2100.2</div><div><br></div><div> ITERATION DDIFF GRAD ENERGY 2-EL.EN. DIPOLE MOMENTS DIIS CPU(IT) CPU(TOT)</div><div> 1 0.000D+00 0.000D+00 -763.71403299 1076.460119 -5.91241 19.03625 27.93897 0 4.5 8.2 diag </div><div> 2 0.000D+00 0.524D-02 -763.82398583 1059.880914 -6.14762 18.95680 27.77697 1 7.0 15.2 diag </div><div> 3 0.934D-02 0.318D-02 -763.86445854 1065.879276 -6.08662 18.97581 27.82482 2 3.7 18.9 diag </div><div> 4 0.296D-02 0.329D-03 -763.86536985 1065.794437 -6.09043 18.96565 27.83624 3 1.4 20.3 diag </div><div> 5 0.546D-03 0.112D-03 -763.86547667 1065.707741 -6.09213 18.96433 27.83656 4 5.7 26.0 diag </div><div> 6 0.167D-03 0.286D-04 -763.86548593 1065.725571 -6.09276 18.96314 27.83764 5 4.2 30.2 diag </div><div> 7 0.525D-04 0.785D-05 -763.86548683 1065.722973 -6.09298 18.96260 27.83832 6 1.4 31.7 diag </div><div> 8 0.179D-04 0.312D-05 -763.86548692 1065.722885 -6.09304 18.96261 27.83820 7 6.5 38.1 diag </div><div> 9 0.472D-05 0.975D-06 -763.86548693 1065.723378 -6.09307 18.96255 27.83827 7 4.7 42.8 diag </div><div> 10 0.192D-05 0.210D-06 -763.86548693 1065.723400 -6.09308 18.96254 27.83827 7 1.2 44.0 orth </div><div> 11 0.618D-06 0.365D-07 -763.86548693 1065.723401 -6.09308 18.96254 27.83828 7 1.3 45.3 diag </div><div> 12 0.868D-07 0.127D-07 -763.86548693 1065.723411 -6.09308 18.96254 27.83828 0 1.7 47.0 orth </div><div><br></div><div> Final occupancy: 29</div><div><br></div><div> !RHF STATE 1.1 Energy -763.865486934830</div><div> Nuclear energy 232.54897094</div><div> One-electron energy -1529.27616346</div><div> Two-electron energy 532.86170559</div><div> Virial quotient -1.00076072</div><div> !RHF STATE 1.1 Dipole moment -6.09307814 18.96254249 27.83827684</div><div> Dipole moment /Debye -15.48604555 48.19481874 70.75320765</div><div><br></div><div> Orbital energies:</div><div><br></div><div> 1.1 2.1 3.1 4.1 5.1 6.1 7.1 8.1 9.1 10.1</div><div> -104.593072 -20.421540 -20.421530 -20.420088 -20.419899 -10.319328 -7.785619 -7.785306 -7.785264 -1.207544</div><div><br></div><div> 11.1 12.1 13.1 14.1 15.1 16.1 17.1 18.1 19.1 20.1</div><div> -1.194766 -1.193974 -1.192085 -0.838590 -0.554320 -0.549893 -0.548746 -0.547774 -0.464367 -0.450035</div><div><br></div><div> 21.1 22.1 23.1 24.1 25.1 26.1 27.1 28.1 29.1 30.1</div><div> -0.448503 -0.444910 -0.367286 -0.360322 -0.358844 -0.357288 -0.251992 -0.247199 -0.246291 0.209232</div><div><br></div><div> 31.1</div><div> 0.227953</div><div><br></div><div><br></div><div> **********************************************************************************************************************************</div><div> DATASETS * FILE NREC LENGTH (MB) RECORD NAMES</div><div> 1 19 4.80 500 610 700 900 950 970 1000 129 960 1100 </div><div> VAR BASINP GEOM SYMINP ZMAT AOBASIS BASIS P2S ABASIS S </div><div> 1400 1410 1200 1210 1080 1600 1650 1700 960(1)</div><div> T V H0 H01 AOSYM SMH MOLCAS OPER ABASIS </div><div><br></div><div> 2 3 1.78 700 1000 2100 </div><div> GEOM BASIS RHF </div><div><br></div><div> PROGRAMS * TOTAL HF INT</div><div> CPU TIMES * 72.53 72.26 0.15</div><div> REAL TIME * 854.30 SEC</div><div> DISK USED * 131.97 MB </div><div> SF USED * 4.94 MB </div><div> GA USED * 0.00 MB (max) 0.00 MB (current)</div><div> **********************************************************************************************************************************</div><div><br></div><div><br></div><div> Input parameters for LOCAL:</div><div><br></div><div> LOCAL = -1.000000</div><div><br></div><div>1PROGRAM * MP2 (Closed-shell) Authors: C. Hampel, H.-J. Werner, 1991, M. Deegan, P.J. Knowles, 1992</div><div><br></div><div> Local implementation by C. Hampel and H.-J. Werner, 1996</div><div> M. Schuetz, G. Hetzer, and H.-J. Werner, 1999</div><div> MP2-F12 implementation by H.-J. Werner, 2007</div><div><br></div><div> Density fitting integral evaluation by F.R. Manby, 2003,2007, G. Knizia, 2010</div><div><br></div><div> Basis set CC-PVDZ-F12/OPTRI generated. Number of basis functions: 506 </div><div> Basis set AUG-CC-PVDZ/MP2FIT generated. Number of basis functions: 564 </div><div><br></div><div> Convergence thresholds: THRVAR = 1.00D-12 THRDEN = 1.00D-08</div><div><br></div><div> Number of core orbitals: 9 ( 9 )</div><div> Number of closed-shell orbitals: 20 ( 20 )</div><div> Number of external orbitals: 202 ( 202 )</div><div><br></div><div> Molecular orbitals read from record 2100.2 Type=RHF/CANONICAL (state 1.1)</div><div><br></div><div> Local correlation treatment</div><div> ===========================</div><div><br></div><div> LOCAL=4 IBASO=0 NONORM=2 IDLCOR=2 KEEPCORE=1 SKIPD=3 LOCSNG=0 LOCMUL=0 CANBLK=0 SHELLPERM=F</div><div><br></div><div> Thresholds:</div><div><br></div><div> THRLOC= 1.00D-06 (Smallest allowed eigenvalue in domain redundancy check)</div><div> THRGAP= 1.00D-06 (Minimum eigenvalue gap in domain redundancy check)</div><div> THRLOCT=1.00D-06 (Smallest allowed eigenvalue in domain redundancy check of triples)</div><div> THRGAPT=1.00D-06 (Minimum eigenvalue gap in domain redundancy check of triples)</div><div> THRORB= 1.00D-06 (Norm of projected orbitals)</div><div> THRMP2= 1.00D-08 (Neglect of small Fock matrix elements)</div><div><br></div><div> Orbital domain selection criteria:</div><div><br></div><div> CHGFRAC= 1.000 CHGMIN= 0.010 CHGMINH= 0.030 CHGMAX= 0.400 CHGMIN_PAIRS= 0.200 MERGEDOM=0 CANBLK=0</div><div><br></div><div> Weak and distant pair selection criteria:</div><div><br></div><div> RCLOSE= 1.000 RWEAK= 3.000 RDIST= 8.000 RVDIST=15.000 KEEPCLS=0 MP4CLS=0</div><div><br></div><div> Pipek-Mezey localisation finished (npass= 11 nrot= 1219 Thresh= 0.10D-08 CPU= 0.00 sec)</div><div><br></div><div> Ordering localized MOs according to charge centroids</div><div><br></div><div> Generating projected atomic orbitals</div><div> </div><div> Deleting projected core orbital 1.1 (CL 1s) Norm= 0.15D-04</div><div> Deleting projected core orbital 2.1 (CL 2s) Norm= 0.37D-03</div><div> Deleting projected core orbital 7.1 (CL 2px) Norm= 0.55D-03</div><div> Deleting projected core orbital 8.1 (CL 2py) Norm= 0.60D-03</div><div> Deleting projected core orbital 9.1 (CL 2pz) Norm= 0.58D-03</div><div> Deleting projected core orbital 40.1 (O 1s) Norm= 0.13D-02</div><div> Deleting projected core orbital 88.1 (O 1s) Norm= 0.13D-02</div><div> Deleting projected core orbital 136.1 (O 1s) Norm= 0.13D-02</div><div> Deleting projected core orbital 184.1 (O 1s) Norm= 0.13D-02</div><div><br></div><div> Using full domains for all orbitals</div><div><br></div><div> Number of strong pairs: 210</div><div><br></div><div> Using 7 processors for pair domains. ntask= 210 ngroup= 13 minbatch= 1 maxbatch= 8</div><div><br></div><div> Average pair domain sizes: 231 (strong pairs: 231, close pairs: 0, weak pairs: 0, distant pairs: 0)</div><div> Number of redundant orbitals: 6090</div><div><br></div><div> Largest S-eigenvalue of redundant functions: 0.2436D-14 Pair: 13 Symmetry: 1</div><div> Smallest S-eigenvalue of domains 0.7085D-03 Pair: 13 Symmetry: 1</div><div><br></div><div> CPU-time for pair domains: 2.88 SEC</div><div><br></div><div> Number of orbital pairs: 210</div><div> Number of operators K(kl): 210</div><div> Number of operators J(kl): 210</div><div><br></div><div> icfit_3ext= 0 icfit_4ext= 0</div><div> locfit_ccsd=0 locfit_2ext=0 locfit_3ext=0 locfit_4ext=0 locfit=0</div><div><br></div><div> Number of correlated orbitals: 20</div><div> Number of strong pair functions: 210</div><div> Total number of pair functions: 210</div><div> Number of singly external local CSFs: 4620</div><div> Number of doubly external local CSFs: 10674510 (all pairs) 10674510 (strong pairs) 0 (weak pairs)</div><div> Total number of local CSFs: 10679131 (all pairs) 10679131 (strong pairs)</div><div><br></div><div> Pair and operator lists are different</div><div><br></div><div> Length of J-op integral file: 0.91 MB</div><div> Length of K-op integral file: 90.75 MB</div><div><br></div><div> LMP2-F12 correlation treatment (H.-J. Werner, 2006)</div><div> ---------------------------------------------------</div><div><br></div><div> Using LMP2-F12 with ansatz 3C(D)</div><div><br></div><div> Using projected zeroth-order Hamiltonian (+Z)</div><div><br></div><div> FOCKRIB=T FOCKRIC=T FOCKRIP=T CABSP=T CABSA=T CABSK=T CABSF=T GBC=F EBC=F DMAT=T NOFIK=T NOPAO=1 SOLVE=-1 USEPAO=0</div><div> EXCH_A= T EXCH_B= F EXCH_C= F EXCH_P= F</div><div> </div><div> Geminal basis: OPTFULL GEM_TYPE=SLATER BETA=1.0 NGEM=6</div><div><br></div><div> Optimizing Gaussian exponents for each gem_beta</div><div><br></div><div> Geminal optimization for beta= 1.0000</div><div> Weight function: m=0, omega= 1.4646</div><div><br></div><div> Augmented Hessian optimization of geminal fit. Trust ratio= 0.40000</div><div> Convergence reached after 2 iterations. Final gradient= 8.51D-16, Step= 4.19D-06, Delta= 1.28D-09</div><div> </div><div> Alpha: 0.19532 0.81920 2.85917 9.50073 35.69989 197.79328</div><div> Coeff: 0.27070 0.30552 0.18297 0.10986 0.06810 0.04224</div><div> </div><div><br></div><div> All pairs explicitly correlated. Number of r12-pairs: 210</div><div> </div><div> AO(A)-basis ORBITAL loaded. Number of functions: 231</div><div> RI(R)-basis CC-PVDZ-F12/OPTRI loaded. Number of functions: 506</div><div> DF-basis AUG-CC-PVDZ/JKFIT loaded. Number of functions: 728</div><div><br></div><div> Screening thresholds: THRAO= 1.00D-10 THRMO= 1.00D-10 THRPROD= 1.00D-10</div><div> THRSW= 1.00D-07 THROV= 1.00D-12 THRF12= 1.00D-08</div><div><br></div><div> CPU time for Fock operators 8.98 sec</div><div> </div><div> Construction of ABS:</div><div> Smallest eigenvalue of S 1.21E-03 (threshold= 1.00E-08)</div><div> Ratio eigmin/eigmax 1.15E-05 (threshold= 1.00E-09)</div><div> Smallest eigenvalue of S kept 1.21E-03 (threshold= 1.21E-03, 0 functions deleted, 506 kept)</div><div> </div><div> Construction of CABS:</div><div> Smallest eigenvalue of S 4.15E-05 (threshold= 1.00E-08)</div><div> Ratio eigmin/eigmax 4.15E-05 (threshold= 1.00E-09)</div><div> Smallest eigenvalue of S kept 4.15E-05 (threshold= 4.15E-05, 0 functions deleted, 506 kept)</div><div> </div><div> CPU time for CABS singles 0.86 sec</div><div><br></div><div> CABS-singles contribution of -0.01145410 patched into reference energy.</div><div> New reference energy -763.87694103</div><div> </div><div> AO(A)-basis ORBITAL loaded. Number of functions: 231</div><div> RI(R)-basis CC-PVDZ-F12/OPTRI loaded. Number of functions: 506</div><div> DF-basis AUG-CC-PVDZ/MP2FIT loaded. Number of functions: 564</div><div><br></div><div> Screening thresholds: THRAO= 1.00D-10 THRMO= 1.00D-10 THRPROD= 1.00D-10</div><div> THRSW= 1.00D-07 THROV= 1.00D-12 THRF12= 1.00D-08</div><div><br></div><div> CPU time for 3-index integral evaluation 13.50 sec</div><div> CPU time for first half transformation 0.38 sec ( 7329.3 MFLOP/sec)</div><div> CPU time for second half transformation 0.89 sec ( 185.2 MFLOP/sec)</div><div> CPU time for sorting 0.42 sec</div><div> CPU time for fitting 0.99 sec ( 1607.2 MFLOP/sec)</div><div> CPU time for tilde quantities 1.75 sec ( 877.6 MFLOP/sec)</div><div> CPU time for assembly 10.78 sec ( 3554.4 MFLOP/sec)</div><div> CPU time for tranop_f12 32.86 sec ( 1834.9 MFLOP/sec)</div><div> CPU time for f12 integrals (total) 82.32 sec</div><div> F12-matrices built in 7 passes.</div><div> F12-matrices built in 7 passes.</div><div> F12-matrices built in 7 passes.</div><div> F12-matrices built in 7 passes.</div><div> FC-matrix built in 7 passes.</div><div> CPU time for f12 matrices (total) 32.98 sec</div><div><br></div><div> Fixed coefficients: Singlet: 0.50 Triplet: 0.25 (scaled by -1/beta)</div><div><br></div><div> Fixed coefficient energy contributions: Singlet: -0.24898534 Triplet: -0.04739382 Total: -0.29637917</div><div> Diagonal (DX) energy contributions: Singlet: -0.23665243 Triplet: -0.04957846 Total: -0.28623089</div><div><br></div><div><br></div><div> Using bfxmat</div><div><br></div><div> Minimum memory for LMP2: 27.49 MW, used: 48.77 MW</div><div><br></div><div> Parallel run using 7 processors. iga_acc=0 mppdiis=1</div><div><br></div><div> Threshold for neglect of couplings: 0.10D-07 LMP2ALGO= 0 DYNAMIC=0 LIIS=1</div><div><br></div><div> ITER. SQ.NORM CORR.ENERGY TOTAL ENERGY ENERGY CHANGE VAR THR CPU DIIS</div><div> 1 1.30438053 -1.13953673 -765.01647776 -1.13953673 0.30D+00 0.10D-04 4.04 0 0</div><div> 2 1.30504232 -1.15646450 -765.03340553 -0.01692777 0.35D-02 0.10D-07 13.20 1 1</div><div> 3 1.32433570 -1.16672158 -765.04366261 -0.01025709 0.10D-03 0.10D-07 18.79 2 2</div><div> 4 1.32486646 -1.16704084 -765.04398188 -0.00031926 0.30D-05 0.10D-07 28.90 3 3</div><div> 5 1.32485946 -1.16704970 -765.04399074 -0.00000886 0.10D-06 0.10D-07 35.16 4 4</div><div> 6 1.32485155 -1.16704999 -765.04399103 -0.00000029 0.37D-08 0.10D-07 40.98 5 5</div><div> 7 1.32484814 -1.16705000 -765.04399104 -0.00000001 0.14D-09 0.10D-07 47.87 6 6</div><div> 8 1.32484805 -1.16705000 -765.04399104 0.00000000 0.63D-11 0.10D-07 56.77 6 1</div><div> 9 1.32484807 -1.16705000 -765.04399104 0.00000000 0.30D-12 0.10D-07 64.60 6 2</div><div><br></div><div> CPU TIME FOR ITERATIVE MP2: 64.60 SEC</div><div><br></div><div><br></div><div> ITER. SQ.NORM CORR.ENERGY F12-ENERGY TOTAL ENERGY ENERGY CHANGE VAR THR CPU DIIS MIC</div><div> 2 1.32821294 -1.17256682 -0.28260019 -765.33210805 -1.45516701 0.21D-03 0.10D-07 6.33 1 1 1</div><div> 3 1.32558072 -1.17257692 -0.28490268 -765.33442063 -0.00231259 0.68D-06 0.10D-07 10.26 2 2 1</div><div> 4 1.32545157 -1.17258137 -0.28490810 -765.33443050 -0.00000987 0.89D-08 0.10D-07 20.05 3 3 1</div><div> 5 1.32544591 -1.17258157 -0.28491080 -765.33443340 -0.00000290 0.21D-09 0.10D-07 26.02 4 4 1</div><div> 6 1.32544350 -1.17258144 -0.28491112 -765.33443360 -0.00000020 0.68D-11 0.10D-07 32.99 5 5 1</div><div> 7 1.32544359 -1.17258145 -0.28491111 -765.33443360 0.00000000 0.27D-12 0.10D-07 61.71 6 6 1</div><div><br></div><div> CPU TIME FOR ITERATIVE MP2: 61.71 SEC</div><div><br></div><div><br></div><div> DF-MP2-F12 energy corrections:</div><div> ------------------------------</div><div> Approx. Singlet Triplet Total</div><div> DF-MP2-F12/3*C(DX) -0.236652433343 -0.049578455926 -0.286230889270</div><div> DF-MP2-F12/3*C(D) -0.236676322772 -0.049823232905 -0.286499555677</div><div> DF-MP2-F12/3C(D) -0.238389424428 -0.052053135182 -0.290442559610</div><div><br></div><div> DF-MP2-F12 correlation energies:</div><div> --------------------------------</div><div> Approx. Singlet Triplet Ecorr Total Energy</div><div> DF-MP2 -0.711971541767 -0.455078461142 -1.167050002909 -765.043991036981</div><div> DF-MP2-F12/3*C(DX) -0.948623975111 -0.504656917068 -1.453280892179 -765.330221926251</div><div> DF-MP2-F12/3*C(D) -0.948647864540 -0.504901694047 -1.453549558586 -765.330490592658</div><div> DF-MP2-F12/3C(D) -0.950360966195 -0.507131596324 -1.457492562519 -765.334433596591</div><div><br></div><div> SCS-DF-MP2 energies (F_SING= 1.20000 F_TRIP= 0.62222 F_PARALLEL= 0.33333):</div><div> ----------------------------------------------------------------------------</div><div> SCS-DF-MP2 -1.137525781498 -765.014466815570</div><div> SCS-DF-MP2-F12/3*C(DX) -1.452357518531 -765.329298552603</div><div> SCS-DF-MP2-F12/3*C(D) -1.452538491521 -765.329479525593</div><div> SCS-DF-MP2-F12/3C(D) -1.455981708258 -765.332922742330</div><div> </div><div><br></div><div> RESULTS</div><div> =======</div><div> </div><div> Reference energy -763.865486934833</div><div> F12 singles correction -0.011454099239</div><div><br></div><div> F12 singles corrections added to reference energy</div><div><br></div><div> New reference energy -763.876941034072</div><div><br></div><div> F12/3C(D) correction -0.290442559610</div><div> </div><div> MP2-F12/3C(D) correlation energy -1.457492562519</div><div> !MP2-F12/3C(D) total energy -765.334433596591</div></div><div><br></div><div><br></div><div><br></div><div><br></div><div>Thanks for your help!</div><div><br></div><div>Jiang Shuai</div><div>Hefei Institutes of Physical Science, Chinese Academy of Sciences</div></font></div><div></div><div> </div>