<html>
  <head>
    <meta content="text/html; charset=ISO-8859-1"
      http-equiv="Content-Type">
  </head>
  <body bgcolor="#FFFFFF" text="#000000">
    <div class="moz-cite-prefix">On 13/11/13 15:58, Qinghua Cao wrote:<br>
    </div>
    <blockquote cite="mid:SNT146-W513F1FEBB7A1A9A24B7859CFF90@phx.gbl"
      type="cite">
      <meta http-equiv="Content-Type" content="text/html;
        charset=ISO-8859-1">
      <style><!--
.hmmessage P
{
margin:0px;
padding:0px
}
body.hmmessage
{
font-size: 12pt;
font-family:Calibri
}
--></style>
      <div dir="ltr">Hey, everyone,<br>
        <br>
        I'm working on the vertical transition energy in two ways:<br>
        <br>
        1. a state-averaged CASSCF calculation of all states in one
        calculation (i also tried to include different numbers of
        states, and the result may vary significantly with the number of
        state!!)<br>
        2. CASSCF calculations of ground state and excited states
        individually<br>
        <br>
        it turns out that the transition energies are very different
        from the above ways, and they could differ as large as 1 eV.
        Moreover, including 10 states and 20 states in a state-averaged
        CASSCF calculation also lead to very different results.<br>
        <br>
        I don't know whether this ever occurs to any of you. If so, are
        there any reasons or explanations for this? Which is the most
        reliable way to calculate the energy?<br>
        <br>
        Thanks in advance!<br>
        <br>
        Qinghua<br>
      </div>
    </blockquote>
    <br>
    <br>
    Dear Qinghua,<br>
    as no one more competent than me has yet commented on your question,
    I'll give you my opinion on the matter. <br>
    It is to be expected that vertical excitation energies of
    state-averaged CASSCF differ depending on the number of states
    included (and on the active space used); that said, a difference of
    1 eV looks indeed quite large, but not knowing which system you are
    studying it is difficult to comment on that. I also think it is
    impossible to blindly say which strategy gives the `best' (=closest
    to experiment) excitation energies. <br>
    <br>
    Leaving aside numerical problems of incorrect convergence to local
    minima, the reason for these difference is due to the orbital
    optimization. It seems to be the case that for your system and for
    the active space you are using (for example, the `full valence' one
    used by molpro by default) the electronic states you are considering
    have rather different optimal orbitals.<br>
    <br>
    As an idealized example, suppose there are three electronic states,
    a ground state G and two excited ones A and B, and that when you do
    CASSCF for each state one state at a time you get orbitals O1 for G,
    again O1 for A and O2 for B. In other words G and A have the same
    optimal CASSCF orbitals while B's optimal orbitals are different.<br>
    When you do a state-average CASSCF calculation with all three states
    you get orbitals which are intermediate between O1 and O2 (closer to
    O1 if you use standard weights as two states `want' O1 and only one
    O2); the absolute energies of all states will be increased with
    respect to the one-at-a-time values, but presumably the energy of B
    will be increased more than G and A because the intermediate
    orbitals are less optimal for that state.<br>
    If you do a calculation with G+B the orbitals will be `half way'
    between O1 and O2, and with respect to the three-state-averaged
    calculation G will be higher in energy and B lower, and as a
    consequence E(B)-E(A) [G+A+B state-averaged] >  E(B)-E(A) [G+B
    state-averaged].<br>
    <br>
    In your case where you have 20 states (each with different optimal
    orbitals) the situation is more complicated but the idea is the
    same. If the optimal orbitals are very different for different
    states you'll see large differences depending on which states are
    included in the state-averaging.<br>
    A possibles, straightforward suggestion is to try a different
    reference space (e.g., larger) to see if it reduces the differences
    between state-averaged and two-states-at-a-time excitation energies.
    <br>
    On a more complicated level one could also try to group together
    states which have similar optimal orbitals and get the relative
    energies within each group, and then carefully perform
    two-state-averaged calculations to link the networks (I don't know
    if this strategy has been used in the literature).<br>
    <br>
    In any case one should not expect CASSCF energies to give very
    accurate (e.g., accurate to ~0.25 eV or so) excitation energies
    because of the lack of dynamical electron correlation.  You should
    also try a post-CASSCF method (RS2, MRCI, CIPT2) and see what
    difference it makes to your results.<br>
    <br>
    I hope it helps.<br>
    <br>
    Kind regards, <br>
    Lorenzo<br>
  </body>
</html>