<html>
  <head>
    <meta content="text/html; charset=windows-1252"
      http-equiv="Content-Type">
  </head>
  <body text="#000000" bgcolor="#FFFFFF">
    <div class="moz-cite-prefix">Hi,<br>
      <br>
      The error seem to be numerical, probably due to small symmetry
      problem in orbitals/integrals; but might be a bug as well. Before
      looking in detail, could you please try the same calculation with
      much tighter thresholds for integrals, orbitals, and CI
      coefficients?<br>
      <br>
      Best,<br>
      <br>
      Alexander<br>
      <br>
      Le 26/11/2015 02:49, ZOUWL a écrit :<br>
    </div>
    <blockquote
cite="mid:CAFumqg_QDAu0gVek8NnSQ0o==WYeJZe7Fpxa2cWNCx2zdbcWcw@mail.gmail.com"
      type="cite">
      <div dir="ltr">
        <div>Dear developers,</div>
        <div><br>
        </div>
        <div>There may be a bug in the following spin-orbit calculation.
          The low-lying 1D, 3P, 3F, and 5F states of Ta+ are calculated
          at the CASSCF(4,6) level, where the 5d6s orbitals are active.
          Group symmery used here is Ci, but the results and errors are
          the same if D2h is used. All the calculations are performed
          using the 2010 version. Input:</div>
        <div><br>
        </div>
        <div>***,Ta+, SOC with ECP</div>
        <div>memory,100,m</div>
        <div><br>
        </div>
        <div>symmetry,xyz</div>
        <div><br>
        </div>
        <div>geometry={Ta}</div>
        <div><br>
        </div>
        <div>basis=vtz-pp</div>
        <div><br>
        </div>
        <div>{multi;natorb,ci;</div>
        <div>frozen,0;closed,1,3;occ,7,3;</div>
        <div>wf,12,1,0;state,5;   ! 1D</div>
        <div>wf,12,1,2;state,10;  ! 3P, 3F</div>
        <div>wf,12,1,4;state,7;   ! 5F</div>
        <div>}</div>
        <div><br>
        </div>
        <div>{ci;noexc;wf,12,1,0;state,5;</div>
        <div>save,4201.3;}</div>
        <div>{ci;noexc;wf,12,1,2;state,10;</div>
        <div>save,4221.3;}</div>
        <div>{ci;noexc;wf,12,1,4;state,7;</div>
        <div>save,4241.3;}</div>
        <div><br>
        </div>
        <div>! SOC: singlet and triplet states</div>
        <div>{ci;hlsmat,ecpls,4201.3,4221.3;}</div>
        <div>! SOC: triplet and quintet states</div>
        <div>{ci;hlsmat,ecpls,4221.3,4241.3;}</div>
        <div>! SOC: singlet and quintet states</div>
        <div>{ci;hlsmat,ecpls,4201.3,4241.3;}</div>
        <div>---</div>
        <div><br>
        </div>
        <div>The CASSCF energies of L-S states are degenerate (normal):</div>
        <div>1D: -56.47502225 (x 5)</div>
        <div>3P: -56.49919112 (x 3)</div>
        <div>3F: -56.48533379 (x 7)</div>
        <div>5F: -56.52492675 (x 7)</div>
        <div><br>
        </div>
        <div>In the first (singlet + triplet) and the third (singlet +
          quintet) SOC calculations, the energies of atomic J terms are
          degenerate (normal):</div>
        <div><br>
        </div>
        <div>   Nr  Sym         E             E-E0         E-E0        
            E-E(1)      E-E(1)      E-E(1)</div>
        <div>                 (au)            (au)        (cm-1)        
            (au)       (cm-1)        (eV)</div>
        <div>   1   1    -56.51000193     -0.01081081    -2372.70    
           0.00000000        0.00      0.0000</div>
        <div>   2   1    -56.50459652     -0.00540540    -1186.35    
           0.00540540     1186.35      0.1471</div>
        <div>   3   1    -56.50459652     -0.00540540    -1186.35    
           0.00540540     1186.35      0.1471</div>
        <div>   4   1    -56.50459652     -0.00540540    -1186.35    
           0.00540540     1186.35      0.1471</div>
        <div>   5   1    -56.50158234     -0.00239123     -524.81    
           0.00841958     1847.88      0.2291</div>
        <div>   6   1    -56.50158234     -0.00239123     -524.81    
           0.00841958     1847.88      0.2291</div>
        <div>   7   1    -56.50158234     -0.00239123     -524.81    
           0.00841958     1847.88      0.2291</div>
        <div>   8   1    -56.50158234     -0.00239123     -524.81    
           0.00841958     1847.88      0.2291</div>
        <div>   9   1    -56.50158234     -0.00239123     -524.81    
           0.00841958     1847.88      0.2291</div>
        <div>  10   1    -56.49671921      0.00247191      542.52    
           0.01328272     2915.22      0.3614</div>
        <div>  11   1    -56.49671921      0.00247191      542.52    
           0.01328272     2915.22      0.3614</div>
        <div>  12   1    -56.49671921      0.00247191      542.52    
           0.01328272     2915.22      0.3614</div>
        <div>  13   1    -56.49671921      0.00247191      542.52    
           0.01328272     2915.22      0.3614</div>
        <div>  14   1    -56.49671921      0.00247191      542.52    
           0.01328272     2915.22      0.3614</div>
        <div>...</div>
        <div>   Nr         E             E-E0         E-E0          
          E-E(1)      E-E(1)      E-E(1)</div>
        <div>            (au)            (au)        (cm-1)          
          (au)       (cm-1)        (eV)</div>
        <div>   1   -56.54141852    -0.01649177    -3619.53    
           0.00000000        0.00      0.0000</div>
        <div>   2   -56.54141852    -0.01649177    -3619.53    
           0.00000000        0.00      0.0000</div>
        <div>   3   -56.54141852    -0.01649177    -3619.53    
           0.00000000        0.00      0.0000</div>
        <div>   4   -56.53729558    -0.01236883    -2714.64    
           0.00412294      904.88      0.1122</div>
        <div>   5   -56.53729558    -0.01236883    -2714.64    
           0.00412294      904.88      0.1122</div>
        <div>   6   -56.53729558    -0.01236883    -2714.64    
           0.00412294      904.88      0.1122</div>
        <div>   7   -56.53729558    -0.01236883    -2714.64    
           0.00412294      904.88      0.1122</div>
        <div>   8   -56.53729558    -0.01236883    -2714.64    
           0.00412294      904.88      0.1122</div>
        <div>   9   -56.53111117    -0.00618441    -1357.32    
           0.01030736     2262.20      0.2805</div>
        <div>  10   -56.53111117    -0.00618441    -1357.32    
           0.01030736     2262.20      0.2805</div>
        <div>  11   -56.53111117    -0.00618441    -1357.32    
           0.01030736     2262.20      0.2805</div>
        <div>  12   -56.53111117    -0.00618441    -1357.32    
           0.01030736     2262.20      0.2805</div>
        <div>  13   -56.53111117    -0.00618441    -1357.32    
           0.01030736     2262.20      0.2805</div>
        <div>  14   -56.53111117    -0.00618441    -1357.32    
           0.01030736     2262.20      0.2805</div>
        <div>  15   -56.53111117    -0.00618441    -1357.32    
           0.01030736     2262.20      0.2805</div>
        <div>...</div>
        <div><br>
        </div>
        <div>However, in the second SOC calculation (triplet + quintet),
          spherical degeneracy (degeneracy = J * 2 + 1) is broken
          because of unknown reasons:</div>
        <div><br>
        </div>
        <div>   Nr         E             E-E0         E-E0          
          E-E(1)      E-E(1)      E-E(1)</div>
        <div>            (au)            (au)        (cm-1)          
          (au)       (cm-1)        (eV)</div>
        <div>   1   -56.54145102    -0.01652427    -3626.66    
           0.00000000        0.00      0.0000</div>
        <div>   2   -56.54145075    -0.01652400    -3626.60    
           0.00000027        0.06      0.0000</div>
        <div>   3   -56.54144331    -0.01651655    -3624.96    
           0.00000771        1.69      0.0002</div>
        <div>   4   -56.53734340    -0.01241665    -2725.14    
           0.00410762      901.52      0.1118</div>
        <div>   5   -56.53734093    -0.01241418    -2724.60    
           0.00411009      902.06      0.1118</div>
        <div>   6   -56.53731961    -0.01239286    -2719.92    
           0.00413141      906.74      0.1124</div>
        <div>   7   -56.53730864    -0.01238189    -2717.51    
           0.00414238      909.15      0.1127</div>
        <div>   8   -56.53730809    -0.01238134    -2717.39    
           0.00414293      909.27      0.1127</div>
        <div>   9   -56.53118445    -0.00625770    -1373.41    
           0.01026657     2253.25      0.2794</div>
        <div>  10   -56.53117231    -0.00624555    -1370.74    
           0.01027871     2255.92      0.2797</div>
        <div>  11   -56.53116127    -0.00623451    -1368.32    
           0.01028975     2258.34      0.2800</div>
        <div>  12   -56.53114109    -0.00621434    -1363.89    
           0.01030993     2262.77      0.2805</div>
        <div>  13   -56.53113027    -0.00620352    -1361.52    
           0.01032075     2265.14      0.2808</div>
        <div>  14   -56.53112879    -0.00620203    -1361.19    
           0.01032223     2265.47      0.2809</div>
        <div>  15   -56.53112337    -0.00619661    -1360.00    
           0.01032765     2266.66      0.2810</div>
        <div>...</div>
        <div><br>
        </div>
        <div>There is no such a problem in the following all-electron
          calculation, so the error may be related to the ECPLS option.</div>
        <div><br>
        </div>
        <div>***,Ta+, SOC with A.E.</div>
        <div>memory,100,m</div>
        <div><br>
        </div>
        <div>symmetry,xyz</div>
        <div><br>
        </div>
        <div>geometry={Ta}</div>
        <div><br>
        </div>
        <div>basis=vtz-dk</div>
        <div><br>
        </div>
        <div>set dkroll=1</div>
        <div><br>
        </div>
        <div>{hf;occ,21,19;wf,80,1,0}</div>
        <div><br>
        </div>
        <div>{multi;natorb,ci;</div>
        <div>! 4f5s5p are inactive</div>
        <div>frozen,14,9;closed,15,19;occ,21,19;</div>
        <div>wf,72,1,0;state,5;   ! 1D</div>
        <div>wf,72,1,2;state,10;  ! 3P, 3F</div>
        <div>wf,72,1,4;state,7;   ! 5F</div>
        <div>}</div>
        <div><br>
        </div>
        <div>{ci;noexc;wf,72,1,0;state,5;</div>
        <div>save,4201.3;}</div>
        <div>{ci;noexc;wf,72,1,2;state,10;</div>
        <div>save,4221.3;}</div>
        <div>{ci;noexc;wf,72,1,4;state,7;</div>
        <div>save,4241.3;}</div>
        <div><br>
        </div>
        <div>lsint</div>
        <div>{ci;hlsmat,ls,4201.3,4221.3;}</div>
        <div>{ci;hlsmat,ls,4221.3,4241.3;}</div>
        <div>{ci;hlsmat,ls,4201.3,4241.3;}</div>
        <div>---</div>
        <div><br>
        </div>
        <div>Best wishes,</div>
        <div>Wenli</div>
        <div><br>
        </div>
      </div>
      <br>
      <fieldset class="mimeAttachmentHeader"></fieldset>
      <br>
      <pre wrap="">_______________________________________________
Molpro-user mailing list
<a class="moz-txt-link-abbreviated" href="mailto:Molpro-user@molpro.net">Molpro-user@molpro.net</a>
<a class="moz-txt-link-freetext" href="http://www.molpro.net/mailman/listinfo/molpro-user">http://www.molpro.net/mailman/listinfo/molpro-user</a></pre>
    </blockquote>
    <br>
    <br>
    <pre class="moz-signature" cols="72">-- 
Dr. Alexander Mitrushchenkov, IGR
Laboratoire de Modélisation et Simulation Multi Echelle
UMR 8208 CNRS
Université Paris-Est Marne-la-Vallée
5 Bd Descartes
77454 Marne la Vallée, Cedex 2, France

Phone:    +33(0)160957316
Fax:      +33(0)160957320
e-mail:   <a class="moz-txt-link-abbreviated" href="mailto:Alexander.Mitrushchenkov@u-pem.fr">Alexander.Mitrushchenkov@u-pem.fr</a></pre>
  </body>
</html>