<br>Dear molpro-user,<h1 class="profile-title fn" style="margin: 0px; font-family: franklin_gothic_fs_medregular, Arial, 'Helvetica Neue', sans-serif; font-weight: normal; line-height: 40px; text-rendering: optimizeLegibility; text-shadow: none; -webkit-font-smoothing: antialiased; font-stretch: normal;"></h1><div><br></div><div> Recently, I conduct the spin orbit coupling constant calculation using molpro software package. I am interested in how the singlet state jumps to the triplet state via spin orbit coupling and what is the probability of this event. The partial output file is below. How to find the spin orbit coupling constant in the following output file?</div><div> </div><div> Any help would be appreciated.</div><div> Best regards</div><div><br></div><div><br></div><div>Spin-Orbit Matrix (CM-1)</div><div> ========================</div><div><br></div><div> Nr State S &nb
sp; SZ &
nbsp; 1 2 3 4</div><div><br></div><div> 1 1.1 0.0 0.0 0.00 15.44 0.00 15.44</div><div> 0.00 68.34 -0.84 -68.34</div><div><br></div><div> 2 1.1 1.0 1.0 15.44 4739.37 0.00 0.00</div><div> -68.34 0.00 0.00 0.00</div><div><br></div><div> 3 1.1 1.0 0.0 0.00 0.00 4739.37 0.00</div
><div>&n
bsp; 0.84 0.00 0.00 0.00</div><div><br></div><div> 4 1.1 1.0 -1.0 15.44 0.00 0.00 4739.37</div><div> 68.34 0.00 0.00 0.00</div><div> </div><div><br></div><div><br></div><div><br></div><div> Spin-orbit calculation in the basis of symmetry adapted wave functions</div><div> ======================================================================</div><div><br></div><div><br></div><div> >>> Hamiltonian transformed to symmetry adapted basis <<<</div><div><br></div><div><br></div><div> Results for symmetry 1</div><div> ===============
=======<
/div><div><br></div><div> => Spin-Orbit Matrixblock (CM-1) (dimension: 4)</div><div><br></div><div> The diagonal matrixelements are shifted by -1976.35795600 a.u.</div><div> </div><div> State Sym Spin / Nr. 1 2 3 4</div><div> </div><div> 1 1 |0 0> 0.000 21.842 0.000 0.000</div><div> 0.000 0.000 -0.835 96.648</div><div> </div><div> 1 1 |1 1>+ 21.842 4739.371 &n
bsp; 0.0
00 0.000</div><div> 0.000 0.000 0.000 0.000</div><div> </div><div> 1 1 |1 0> 0.000 0.000 4739.371 0.000</div><div> 0.835 0.000 0.000 0.000</div><div> </div><div> 1 1 |1 1>- 0.000 0.000 0.000 4739.371</div><div> -96.648 &nb
sp; &nbs
p; 0.000 0.000 0.000</div><div> </div><div> => Eigenvalues of spin-orbit matrix in ascending order (E0 = Emin,ges)</div><div> (symmetry = 1)</div><div><br></div><div> Nr E E-E0 E-E0 E-E(1) E-E(1) E-E(1)</div><div> (au) (au) (cm-1) (au) (cm-1) (eV)</div><div> 1 -1976.35796543 -0.00000944 -2.07 0.00000000 0.00 0.0000</div><div> 2 -1976.33636184 0.02159416 4739.37  
;
0.02160360 4741.44 0.5879</div><div> 3 -1976.33636184 0.02159416 4739.37 0.02160360 4741.44 0.5879</div><div> 4 -1976.33635240 0.02160360 4741.44 0.02161303 4743.51 0.5881</div><div><br></div><div> => Eigenvectors of spin-orbit matrix columnwise and corresponding to the</div><div> eigenvalues in ascending order (symmetry = 1)</div><div><br></div><div> Basis states Eigenvectors (columnwise)</div><div><br></div><div> State Sym Spin / Nr. 1 2 3 4</div><div> </div><div> 1 1 |0 0>
0.99978
170 0.00000000 0.00000000 -0.02089387</div><div> 0.00000000 0.00000000 0.00000000 0.00000000</div><div> </div><div> 1 1 |1 1>+ -0.00460569 0.77547152 -0.59156726 -0.22038433</div><div> 0.00000000 0.00122329 0.01000706 0.00000000</div><div> </div><div> 1 1 |1 0> 0.00000000 0.60652471 0.79498597 0.00000000</div><div> -0.00017607 0.00423510 -0.00601055 -0.00842513</div><div> </div><div> 1 1 |1 1>- 0.00000000
0.004963
79 0.00460693 0.00000000</div><div> 0.02037916 0.17529297 -0.13374599 0.97515292</div><div> </div><div><br></div><div><br></div><div> Summary of SO results</div><div> =====================</div><div><br></div><div> Eigenvalues of the spin-orbit matrix</div><div> ....................................</div><div><br></div><div> Nr Sym E E-E0 E-E0 E-E(1) E-E(1) E-E(1)</div><div> (au) (au) (cm-1) (au) (cm-1) (eV)</div><div> 1  
; 1 &nbs
p;-1976.35796543 -0.00000944 -2.07 0.00000000 0.00 0.0000</div><div> 2 1 -1976.33636184 0.02159416 4739.37 0.02160360 4741.44 0.5879</div><div> 3 1 -1976.33636184 0.02159416 4739.37 0.02160360 4741.44 0.5879</div><div> 4 1 -1976.33635240 0.02160360 4741.44 0.02161303 4743.51 0.5881</div><div><br></div><div> E0 = -1976.35795600 is the energy of the lowest zeroth-order state</div><div> E1 = -1976.35796543 is the energy of the lowest SO-state</div><div><br></div><div><br></div><div> Spin-orbit eigenvectors (colu
mnwise a
nd corresponding to the eigenvalues in ascending order)</div><div> .......................</div><div><br></div><div> Basis states Eigenvectors (columnwise)</div><div><br></div><div> Total</div><div> Nr Sym State Sym Spin / Nr. 1 2 3 4</div><div> </div><div> 1 1 1 1 |0 0> 0.99978170 0.00000000 0.00000000 -0.02089387</div><div> 0.00000000 0.00000000 0.00000000 0.00000000</div><div> </div><div> 2 1 1 1 |1 1>+ -0.00460569 0.77547152 -0.59156726 -0.22038433</div><div>
&
nbsp; 0.00000000 0.00122329 0.01000706 0.00000000</div><div> </div><div> 3 1 1 1 |1 0> 0.00000000 0.60652471 0.79498597 0.00000000</div><div> -0.00017607 0.00423510 -0.00601055 -0.00842513</div><div> </div><div> 4 1 1 1 |1 1>- 0.00000000 0.00496379 0.00460693 0.00000000</div><div> 0.02037916 0.17529297 -0.13374599 0.97515292</div><div> </div><div> </div><div><br></div><div> Composition of spin-orbit eigenvectors</div><div>&nb
sp;=====
=================================</div><div> Total</div><div> Nr Sym State Sym Spin / Nr. 1 2 3 4</div><div> </div><div> 1 1 1 1 |0 0> 99.96% 0.00% 0.00% 0.04%</div><div> 2 1 1 1 |1 1>+ 0.00% 60.14% 35.01% 4.86%</div><div> 3 1 1 1 |1 0> 0.00% 36.79% 63.20% 0.01%</div><div> 4 1 1 1 |1 1>- 0.04% 3.08% 1.79% 95.09%</div><div><br></div><br><span></span><br><br><br>