Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
properties_and_expectation_values [2024/08/21 16:31] – [Dipole fields (DIP)] peterk | properties_and_expectation_values [2024/08/22 09:22] (current) – [Dipole fields (DIP)] peterk | ||
---|---|---|---|
Line 300: | Line 300: | ||
'' | '' | ||
- | Add a finite combination $H_1=\vec d \cdot \vec \mu$, $\vec d=(\textit{dx}, | + | Add a finite combination |
The perturbed hamiltonian represents a physical system in a uniform electric field with electric field strength $\vec F= -\vec d$. Therefore the corresponding energy-derivative form of the dipole moment projection in this direction can be obtained as $$|\vec F|^{-1}\vec F \cdot \vec \mu = |2\vec d|^{-1}(E(\vec d)-E(-\vec d)) + O(|\vec d|^2)= |\vec d|^{-1}(E(\vec d)-E(\vec 0)) + O(|\vec d|).$$ | The perturbed hamiltonian represents a physical system in a uniform electric field with electric field strength $\vec F= -\vec d$. Therefore the corresponding energy-derivative form of the dipole moment projection in this direction can be obtained as $$|\vec F|^{-1}\vec F \cdot \vec \mu = |2\vec d|^{-1}(E(\vec d)-E(-\vec d)) + O(|\vec d|^2)= |\vec d|^{-1}(E(\vec d)-E(\vec 0)) + O(|\vec d|).$$ | ||
+ | The diagonal polarisability in this direction can similarly be calculated via | ||
+ | $$\alpha_{\vec d, \vec d} = |\vec d|^{-2}(E(\vec d)+E(-\vec d)-2E(\vec 0)) + O(|\vec d|^2).$$ | ||
==== Quadrupole fields (QUAD) ==== | ==== Quadrupole fields (QUAD) ==== |