Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
properties_and_expectation_values [2024/08/21 16:37] – [Dipole fields (DIP)] peterkproperties_and_expectation_values [2024/08/22 09:22] (current) – [Dipole fields (DIP)] peterk
Line 300: Line 300:
 ''%%DIP+%%'',//dx,dy,dz//; ''%%DIP+%%'',//dx,dy,dz//;
  
-Add a finite combination $H_1=\vec d \cdot \vec \mu$$\vec d=(\textit{dx},\textit{dy},\textit{dz})$ of dipole operators to the Hamiltonian (both the 1-electron operator and the core energy). ''%%DIP+%%'' adds to any existing field, otherwise any previous perturbation is removed.+Add a finite combination of the dipole operators $\vec\mu=(\mu_x, \mu_y, \mu_z)$, $H_1=\vec d \cdot \vec \mu$ $\vec d=(\textit{dx},\textit{dy},\textit{dz})$)  to the Hamiltonian (both the 1-electron operator and the core energy). ''%%DIP+%%'' adds to any existing field, otherwise any previous perturbation is removed.
  
 The perturbed hamiltonian represents a physical system in a uniform electric field with electric field strength $\vec F= -\vec d$. Therefore the corresponding energy-derivative form of the dipole moment projection in this direction can be obtained as $$|\vec F|^{-1}\vec F \cdot \vec \mu  = |2\vec d|^{-1}(E(\vec d)-E(-\vec d)) + O(|\vec d|^2)= |\vec d|^{-1}(E(\vec d)-E(\vec 0)) + O(|\vec d|).$$ The perturbed hamiltonian represents a physical system in a uniform electric field with electric field strength $\vec F= -\vec d$. Therefore the corresponding energy-derivative form of the dipole moment projection in this direction can be obtained as $$|\vec F|^{-1}\vec F \cdot \vec \mu  = |2\vec d|^{-1}(E(\vec d)-E(-\vec d)) + O(|\vec d|^2)= |\vec d|^{-1}(E(\vec d)-E(\vec 0)) + O(|\vec d|).$$