memory,50,m ! CuO2(NH3)4 geometry={ N -2.244097 0.000000 -0.017684 N 1.111652 -1.671116 -0.178974 N 1.111652 1.671116 -0.178974 N -0.306059 0.000000 -2.311080 Cu -0.179579 0.000000 -0.290548 O -0.184327 0.000000 1.594789 O 1.053213 0.000000 2.103145 H -2.331519 0.000000 1.002818 H 0.614110 0.000000 -2.753879 H -0.793743 0.815054 -2.687415 H -0.793743 -0.815054 -2.687415 H -2.764729 0.814552 -0.345484 H -2.764729 -0.814552 -0.345484 H 0.635193 2.543632 0.052739 H 0.635193 -2.543632 0.052739 H 1.616225 1.397092 0.672915 H 1.616225 -1.397092 0.672915 H 1.809254 1.910324 -0.883324 H 1.809254 -1.910324 -0.883324 } wf,charge=1,spin=2 ! select all-electron minimal basis sets for H,N,O and ECP10 based basis ! set for Cu; using MINAO-PP here instead of MINAO allows us to project ! the obtained wave function on the cc-pVTZ-PP basis later on. basis=MINAO,Cu=MINAO-PP ! Run HF to get an initial guess for the valence electronic ! structure. The level shifts damp and stabilize the convergence. {rhf; shift,-1.0,-0.5; save,2100.2} ! select the actual basis set and start RHF with projected wave function ! from MINAO basis. nitord=1 asks RHF to reorder orbitals in each ! iteration to maximize overlap with the closed and active space ! from the last iteration. basis=AVTZ,Cu=VTZ-PP,H=VDZ(p) {df-rhf,nitord=1; start,2100.2}