Processing math: 44%

Table of Contents

Density functional descriptions

B86: Xalpha beta gamma

Divergence free semiempirical gradient-corrected exchange energy functional. λ=γ in ref. g=c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,

G=c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,

c=3/83342/33π1,

β=0.0076,

λ=0.004.

B86MGC: Xalpha beta gamma with Modified Gradient Correction

B86 with modified gradient correction for large density gradients. g=c(ρ(s))4/3β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5,

G=c(ρ(s))4/3β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5,

c=3/83342/33π1,

β=0.00375,

λ=0.007.

B86R: Xalpha beta gamma Re-optimised

Re-optimised β of B86 used in part 3 of Becke’s 1997 paper. g=c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,

G=c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,

c=3/83342/33π1,

β=0.00787,

λ=0.004.

B88: Becke 1988 Exchange Functional

G=(ρ(s))4/3(c+β(χ(s))21+6βχ(s)arcsinh(χ(s))),

g=(ρ(s))4/3(c+β(χ(s))21+6βχ(s)arcsinh(χ(s))),

c=3/83342/33π1,

β=0.0042.

B88C: Becke 1988 Correlation Functional

Correlation functional depending on B86MGC exchange functional with empirical atomic parameters, t and u. The exchange functional that is used in conjunction with B88C should replace B88MGC here. f=0.8ρ(a)ρ(b)q2(1ln(1+q)q),

q=t(x+y),

x=0.5(c3ρ(a)+β(χ(a))23ρ(a)(1+λ(χ(a))2)4/5)1,

y=0.5(c3ρ(b)+β(χ(b))23ρ(b)(1+λ(χ(b))2)4/5)1,

t=0.63,

g=0.01ρ(s)dz4(12ln(1+1/2z)z),

z=2ur,

r=0.5ρ(s)(c(ρ(s))4/3+β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5)1,

u=0.96,

d=τ(s)1/4σ(ss)ρ(s),

G=0.01ρ(s)dz4(12ln(1+1/2z)z),

c=3/83342/33π1,

β=0.00375,

λ=0.007.

B95: Becke 1995 Correlation Functional

tau dependent Dynamical correlation functional. T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

f=E1+l((χ(a))2+(χ(b))2),

g=Fϵ(ρ(s),0)H(1+ν(χ(s))2)2,

G=Fϵ(ρ(s),0)H(1+ν(χ(s))2)2,

E=ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0),

l=0.0031,

F=τ(s)1/4σ(ss)ρ(s),

H=3/562/3(π2)2/3(ρ(s))5/3,

ν=0.038,

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

B97DF: Density functional part of B97

This functional needs to be mixed with 0.1943*exact exchange. T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.9454,0.7471,4.5961],

B=[0.1737,2.3487,2.4868],

C=[0.8094,0.5073,0.7481],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),

G=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

B97RDF: Density functional part of B97 Re-parameterized by Hamprecht et al

Re-parameterization of the B97 functional in a self-consistent procedure by Hamprecht et al. This functional needs to be mixed with 0.21*exact exchange. T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.955689,0.788552,5.47869],

B=[0.0820011,2.71681,2.87103],

C=[0.789518,0.573805,0.660975],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),

G=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

BR: Becke-Roussel Exchange Functional

A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)

K=12sρsUs, where Us=(1exxex/2)/b, b=x3ex8πρs and x is defined by the nonlinear equation xe2x/3x2=2π2/3ρ5/3s3Qs, where Qs=(υs2γDs)/6, Ds=τsσss4ρs and γ=1.

BRUEG: Becke-Roussel Exchange Functional — Uniform Electron Gas Limit

A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)

As for BR but with γ=0.8.

BW: Becke-Wigner Exchange-Correlation Functional

Hybrid exchange-correlation functional comprimising Becke’s 1998 exchange and Wigner’s spin-polarised correlation functionals. α=3/83342/33π1,

g=α(ρ(s))4/3β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),

G=α(ρ(s))4/3β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),

f=4cρ(a)ρ(b)ρ1(1+d3ρ)1,

β=0.0042,

c=0.04918,

d=0.349.

CS1: Colle-Salvetti correlation functional

R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1974); C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988)

CS1 is formally identical to CS2, except for a reformulation in which the terms involving υ are eliminated by integration by parts. This makes the functional more economical to evaluate. In the limit of exact quadrature, CS1 and CS2 are identical, but small numerical differences appear with finite integration grids.

CS2: Colle-Salvetti correlation functional

R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1974); C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988)

CS2 is defined through K=a(ρ+2bρ5/3[ραtα+ρβtβρtW]ecρ1/31+dρ1/3) where tα=τα2υα8tβ=τβ2υβ8tW=18σρ12υ and the constants are a=0.04918,b=0.132,c=0.2533,d=0.349.

DIRAC: Slater-Dirac Exchange Energy

Automatically generated Slater-Dirac exchange. g=c(ρ(s))4/3,

c=3/83342/33π1.

ECERF: Short-range LDA correlation functional

Local-density approximation of correlation energy
for short-range interelectronic interaction erf(μr21)/r12,
S. Paziani, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. B 73, 155111 (2006).

ϵSRc(rs,ζ,μ)=ϵPW92c(rs,ζ)[ϕ2(ζ)]3Q(μrsϕ2(ζ))+a1μ3+a2μ4+a3μ5+a4μ6+a5μ8(1+b20μ2)4, where Q(x)=2ln(2)2π2ln(1+ax+bx2+cx31+ax+dx2), with a=5.84605, c=3.91744, d=3.44851, and b=d3πα/(4ln(2)4). The parameters ai(rs,ζ) are given by a1=4b60C3+b80C5,a2=4b60C2+b80C4+6b40ϵPW92c,a3=b80C3,a4=b80C2+4b60ϵPW92c,a5=b80ϵPW92c, with C2=3(1ζ2)gc(0,rs,ζ=0)8r3sC3=(1ζ2)g(0,rs,ζ=0)2πr3sC4=9c4(rs,ζ)64r3sC5=9c5(rs,ζ)402πr3sc4(rs,ζ)=(1+ζ2)2g(0,rs(21+ζ)1/3,ζ=1)+(1ζ2)2×g(0,rs(21ζ)1/3,ζ=1)+(1ζ2)D2(rs)ϕ8(ζ)5α2r2sc5(rs,ζ)=(1+ζ2)2g(0,rs(21+ζ)1/3,ζ=1)+(1ζ2)2×g(0,rs(21ζ)1/3,ζ=1)+(1ζ2)D3(rs), and [b0(rs)=0.784949rs[g(0,rs,ζ=1)=25/35α2r2s10.02267rs(1+0.4319rs+0.04r2s)[D2(rs)=e0.547rsr2s(0.388rs+0.676r2s)[D3(rs)=e0.31rsr3s(4.95rs+r2s). Finally, ϵPW92c(rs,ζ) is the Perdew-Wang parametrization of the correlation energy of the standard uniform electron gas [J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)], and g(0,rs,ζ=0)=12(1Brs+Cr2s+Dr3s+Er4s)edrs, is the on-top pair-distribution function of the standard jellium model [P. Gori-Giorgi and J.P. Perdew, Phys. Rev. B 64, 155102 (2001)], where B=0.0207, C=0.08193, D=0.01277, E=0.001859, d=0.7524. The correlation part of the on-top pair-distribution function is gc(0,rs,ζ=0)=g(0,rs,ζ=0)12.

ECERFPBE: Range-Separated Correlation Functional

Toulouse-Colonna-Savin range-separated correlation functional based on PBE, see J. Toulouse et al., J. Chem. Phys. 122, 014110 (2005).

EXACT: Exact Exchange Functional

Hartree-Fock exact exchange functional can be used to construct hybrid exchange-correlation functional.

EXERF: Short-range LDA correlation functional

Local-density approximation of exchange energy
for short-range interelectronic interaction erf(μr12)/r12,
A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J.M. Seminario (Elsevier, Amsterdam, 1996).

ϵSRx(rs,ζ,μ)=34πϕ4(ζ)αrs12(1+ζ)4/3fx(rs,μ(1+ζ)1/3)+12(1ζ)4/3fx(rs,μ(1ζ)1/3) with ϕn(ζ)=12[(1+ζ)n/3+(1ζ)n/3], fx(rs,μ)=μπ[(2y4y3)e1/4y23y+4y3+πerf(12y)],y=μαrs2, and α=(4/9π)1/3.

EXERFPBE: Range-Separated Exchange Functional

Toulouse-Colonna-Savin range-separated exchange functional based on PBE, see J. Toulouse et al., J. Chem. Phys. 122, 014110 (2005).

G96: Gill’s 1996 Gradient Corrected Exchange Functional

α=3/83342/33π1,

g=(ρ(s))4/3(α1137(χ(s))3/2),

G=(ρ(s))4/3(α1137(χ(s))3/2).

HCTH120: Handy least squares fitted functional

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.51473,6.9298,24.707,23.110,11.323],

B=[0.48951,0.2607,0.4329,1.9925,2.4853],

C=[1.09163,0.7472,5.0783,4.1075,1.1717],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

HCTH147: Handy least squares fitted functional

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.542352,7.01464,28.3822,35.0329,20.4284],

B=[0.562576,0.0171436,1.30636,1.05747,0.885429],

C=[1.09025,0.799194,5.57212,5.86760,3.04544],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)+e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

HCTH93: Handy least squares fitted functional

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.72997,3.35287,11.543,8.08564,4.47857],

B=[0.222601,0.0338622,0.012517,0.802496,1.55396],

C=[1.0932,0.744056,5.5992,6.78549,4.49357],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

HJSWPBEX: Meta GGA Correlation Functional

Henderson-Janesko-Scuseria range-separated exchange functional based on a model of an exchange hole derived by a constraint-satisfaction technique, see T. M. Henderson et al., J. Chem. Phys. 128, 194105 (2008).

LTA: Local tau Approximation

LSDA exchange functional with density represented as a function of τ. g=1/2E(2τ(s)),

E(α)=1/9c54/559(α33(π2)2/3)4/5,

c=3/4333π1,

G=1/2E(2τ(s)).

LYP: Lee, Yang and Parr Correlation Functional

C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988); B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 157, 200 (1989). f=4Aρ(a)ρ(b)(1+d3ρ)1ρ1ABω(ρ(a)ρ(b)(822/3cf((ρ(a))8/3+(ρ(b))8/3)+(4718718δ)σ(5/21/18δ)(σ(aa)+σ(bb))1/9(δ11)(ρ(a)σ(aa)ρ+ρ(b)σ(bb)ρ))2/3ρ2σ+(2/3ρ2(ρ(a))2)σ(bb)+(2/3ρ2(ρ(b))2)σ(aa)),

ω=ec3ρρ11/3(1+d3ρ)1,

δ=c3ρ+d13ρ(1+d3ρ)1,

cf=3/1032/3(π2)2/3,

A=0.04918,

B=0.132,

c=0.2533,

d=0.349.

M052XC: M05-2X Meta-GGA Correlation Functional

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

tausMFM=1/2τ(s),

ds=2tausMFM1/4σ(ss)ρ(s),

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[1.0,1.09297,3.79171,2.82810,10.58909],

cCss=[1.0,3.05430,7.61854,1.47665,11.92365],

yCab=0.0031,

yCss=0.06,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))Gab(χ(a),χ(b)),

g=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM,

G=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM.

M052XX: M05-2X Meta-GGA Exchange Functional

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[1.0,0.56833,1.30057,5.50070,9.06402,32.21075,23.73298,70.22996,29.88614,60.25778,13.22205,15.23694],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

tausMFM=1/2τ(s).

M05C: M05 Meta-GGA Correlation Functional

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

tausMFM=1/2τ(s),

ds=2tausMFM1/4σ(ss)ρ(s),

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[1.0,3.78569,14.15261,7.46589,17.94491],

cCss=[1.0,3.77344,26.04463,30.69913,9.22695],

yCab=0.0031,

yCss=0.06,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))Gab(χ(a),χ(b)),

g=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM,

G=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM.

M05X: M05 Meta-GGA Exchange Functional

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[1.0,0.08151,0.43956,3.22422,2.01819,8.79431,0.00295,9.82029,4.82351,48.17574,3.64802,34.02248],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

tausMFM=1/2τ(s).

M062XC: M06-2X Meta-GGA Correlation Functional

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[0.8833596,33.57972,70.43548,49.78271,18.52891],

cCss=[0.3097855,5.528642,13.47420,32.13623,28.46742],

yCab=0.0031,

yCss=0.06,

x=(χ(a))2+(χ(b))2,

tausMFM=1/2τ(s),

tauaMFM=1/2τ(a),

taubMFM=1/2τ(b),

zs=2tausMFM(ρ(s))5/3cf,

z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/32cf,

cf=3/562/3(π2)2/3,

ds=1(χ(s))24zs+4cf,

h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

dCab=[0.1166404,0.09120847,0.06726189,0.00006720580,0.0008448011,0.0],

dCss=[0.6902145,0.09847204,0.2214797,0.001968264,0.006775479,0.0],

aCab=0.003050,

aCss=0.005151,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),

g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,

G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.

M062XX: M06-2X Meta-GGA Exchange Functional

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[0.4600000,0.2206052,0.09431788,2.164494,2.556466,14.22133,15.55044,35.98078,27.22754,39.24093,15.22808,15.22227],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

tausMFM=1/2τ(s).

M06C: M06 Meta-GGA Correlation Functional

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c= 1.709921 ,

{\it Gab} \left( {\it chia},{\it chib} \right) =\sum _{i=0}^{n}{\it cCab}_{{i}} \left( {\frac {{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib}}^{2} \right) }{1+{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib} }^{2} \right) }} \right) ^{i} ,

{\it Gss} \left( {\it chis} \right) =\sum _{i=0}^{n}{\it cCss}_{{i}} \left( {\frac {{\it yCss}\,{{\it chis}}^{2}}{1+{\it yCss}\,{{\it chis} }^{2}}} \right) ^{i} ,

n=4 ,

{\it cCab}=[ 3.741593, 218.7098,- 453.1252, 293.6479,- 62.87470] ,

{\it cCss}=[ 0.5094055,- 1.491085, 17.23922,- 38.59018, 28.45044] ,

{\it yCab}= 0.0031 ,

{\it yCss}= 0.06 ,

x=\sqrt { \left( \chi \left( a \right) \right) ^{2}+ \left( \chi \left( b \right) \right) ^{2}} ,

{\it tausMFM}=1/2\,\tau \left( s \right) ,

{\it tauaMFM}=1/2\,\tau \left( a \right) ,

{\it taubMFM}=1/2\,\tau \left( b \right) ,

{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,

z=2\,{\frac {{\it tauaMFM}}{ \left( \rho \left( a \right) \right) ^{5/ 3}}}+2\,{\frac {{\it taubMFM}}{ \left( \rho \left( b \right) \right) ^ {5/3}}}-2\,{\it cf} ,

{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,

{\it ds}=1-{\frac { \left( \chi \left( s \right) \right) ^{2}}{4\,{ \it zs}+4\,{\it cf}}} ,

h \left( x,z,{\it d0},{\it d1},{\it d2},{\it d3},{\it d4},{\it d5}, \alpha \right) ={\frac {{\it d0}}{\lambda \left( x,z,\alpha \right) }}+ {\frac {{\it d1}\,{x}^{2}+{\it d2}\,z}{ \left( \lambda \left( x,z, \alpha \right) \right) ^{2}}}+{\frac {{\it d3}\,{x}^{4}+{\it d4}\,{x}^ {2}z+{\it d5}\,{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3}}} ,

\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,

{\it dCab}=[- 2.741539,- 0.6720113,- 0.07932688, 0.001918681,- 0.002032902, 0.0] ,

{\it dCss}=[ 0.4905945,- 0.1437348, 0.2357824, 0.001871015,- 0.003788963, 0.0] ,

{\it aCab}= 0.003050 ,

{\it aCss}= 0.005151 ,

f= \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) -\epsilon \left( \rho \left( a \right) ,0 \right) -\epsilon \left( \rho \left( b \right) ,0 \right) \right) \left( {\it Gab} \left( \chi \left( a \right) ,\chi \left( b \right) \right) +h \left( x,z,{\it dCab}_{{0}},{\it dCab}_{{1}},{\it dCab}_{{2}},{\it dCab}_{{3}},{\it dCab}_{{4}},{\it dCab}_{{5}},{\it aCab} \right) \right) ,

g=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} ,

G=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} .

M06HFC: M06-HF Meta-GGA Correlation Functional

T=[ 0.031091, 0.015545, 0.016887] ,

U=[ 0.21370, 0.20548, 0.11125] ,

V=[ 7.5957, 14.1189, 10.357] ,

W=[ 3.5876, 6.1977, 3.6231] ,

X=[ 1.6382, 3.3662, 0.88026] ,

Y=[ 0.49294, 0.62517, 0.49671] ,

P=[1,1,1] ,

\epsilon \left( \alpha,\beta \right) = \left( \alpha+\beta \right) \left( e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}} ,W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3}},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P _{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^ {4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2 }},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y_{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y _{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{ 4} \right) ,

r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,

\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,

\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,

e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,

c= 1.709921 ,

{\it Gab} \left( {\it chia},{\it chib} \right) =\sum _{i=0}^{n}{\it cCab}_{{i}} \left( {\frac {{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib}}^{2} \right) }{1+{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib} }^{2} \right) }} \right) ^{i} ,

{\it Gss} \left( {\it chis} \right) =\sum _{i=0}^{n}{\it cCss}_{{i}} \left( {\frac {{\it yCss}\,{{\it chis}}^{2}}{1+{\it yCss}\,{{\it chis} }^{2}}} \right) ^{i} ,

n=4 ,

{\it cCab}=[ 1.674634, 57.32017, 59.55416,- 231.1007, 125.5199] ,

{\it cCss}=[ 0.1023254,- 2.453783, 29.13180,- 34.94358, 23.15955] ,

{\it yCab}= 0.0031 ,

{\it yCss}= 0.06 ,

x=\sqrt { \left( \chi \left( a \right) \right) ^{2}+ \left( \chi \left( b \right) \right) ^{2}} ,

{\it tausMFM}=1/2\,\tau \left( s \right) ,

{\it tauaMFM}=1/2\,\tau \left( a \right) ,

{\it taubMFM}=1/2\,\tau \left( b \right) ,

{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,

z=2\,{\frac {{\it tauaMFM}}{ \left( \rho \left( a \right) \right) ^{5/ 3}}}+2\,{\frac {{\it taubMFM}}{ \left( \rho \left( b \right) \right) ^ {5/3}}}-2\,{\it cf} ,

{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,

{\it ds}=1-{\frac { \left( \chi \left( s \right) \right) ^{2}}{4\,{ \it zs}+4\,{\it cf}}} ,

h \left( x,z,{\it d0},{\it d1},{\it d2},{\it d3},{\it d4},{\it d5}, \alpha \right) ={\frac {{\it d0}}{\lambda \left( x,z,\alpha \right) }}+ {\frac {{\it d1}\,{x}^{2}+{\it d2}\,z}{ \left( \lambda \left( x,z, \alpha \right) \right) ^{2}}}+{\frac {{\it d3}\,{x}^{4}+{\it d4}\,{x}^ {2}z+{\it d5}\,{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3}}} ,

\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,

{\it dCab}=[- 0.6746338,- 0.1534002,- 0.09021521,- 0.001292037,- 0.0002352983, 0.0] ,

{\it dCss}=[ 0.8976746,- 0.2345830, 0.2368173,- 0.0009913890,- 0.01146165, 0.0] ,

{\it aCab}= 0.003050 ,

{\it aCss}= 0.005151 ,

f= \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) -\epsilon \left( \rho \left( a \right) ,0 \right) -\epsilon \left( \rho \left( b \right) ,0 \right) \right) \left( {\it Gab} \left( \chi \left( a \right) ,\chi \left( b \right) \right) +h \left( x,z,{\it dCab}_{{0}},{\it dCab}_{{1}},{\it dCab}_{{2}},{\it dCab}_{{3}},{\it dCab}_{{4}},{\it dCab}_{{5}},{\it aCab} \right) \right) ,

g=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} ,

G=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} .

M06HFX: M06-HF Meta-GGA Exchange Functional

g=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,

G=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,

S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,

F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,

R= 0.804 ,

\mu=1/3\,\delta\,{\pi }^{2} ,

\delta= 0.066725 ,

n=11 ,

A=[ 0.1179732,- 1.066708,- 0.1462405, 7.481848, 3.776679,- 44.36118,- 18.30962, 100.3903, 38.64360,- 98.06018,- 25.57716, 35.90404] ,

{\it Fs} \left( {\it ws} \right) =\sum _{i=0}^{n}A_{{i}}{{\it ws}}^{i} ,

{\it ws}={\frac {{\it ts}-1}{{\it ts}+1}} ,

{\it ts}={\frac {{\it tslsda}}{{\it tausMFM}}} ,

{\it tslsda}=3/10\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} \left( \rho \left( s \right) \right) ^{5/3} ,

{\it eslsda}=-3/8\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\pi }^{-1}} \left( \rho \left( s \right) \right) ^{4/3} ,

d=[- 0.1179732,- 0.002500000,- 0.01180065, 0.0, 0.0, 0.0] ,

\alpha= 0.001867 ,

{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,

h \left( x,z \right) ={\frac {d_{{0}}}{\lambda \left( x,z,\alpha \right) }}+{\frac {d_{{1}}{x}^{2}+d_{{2}}z}{ \left( \lambda \left( x,z ,\alpha \right) \right) ^{2}}}+{\frac {d_{{3}}{x}^{4}+d_{{4}}{x}^{2}z+ d_{{5}}{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3} }} ,

\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,

{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,

{\it tausMFM}=1/2\,\tau \left( s \right) .

M06LC: M06-L Meta-GGA Correlation Functional

T=[ 0.031091, 0.015545, 0.016887] ,

U=[ 0.21370, 0.20548, 0.11125] ,

V=[ 7.5957, 14.1189, 10.357] ,

W=[ 3.5876, 6.1977, 3.6231] ,

X=[ 1.6382, 3.3662, 0.88026] ,

Y=[ 0.49294, 0.62517, 0.49671] ,

P=[1,1,1] ,

\epsilon \left( \alpha,\beta \right) = \left( \alpha+\beta \right) \left( e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}} ,W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3}},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P _{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^ {4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2 }},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y_{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y _{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{ 4} \right) ,

r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,

\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,

\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,

e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,

c= 1.709921 ,

{\it Gab} \left( {\it chia},{\it chib} \right) =\sum _{i=0}^{n}{\it cCab}_{{i}} \left( {\frac {{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib}}^{2} \right) }{1+{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib} }^{2} \right) }} \right) ^{i} ,

{\it Gss} \left( {\it chis} \right) =\sum _{i=0}^{n}{\it cCss}_{{i}} \left( {\frac {{\it yCss}\,{{\it chis}}^{2}}{1+{\it yCss}\,{{\it chis} }^{2}}} \right) ^{i} ,

n=4 ,

{\it cCab}=[ 0.6042374, 177.6783,- 251.3252, 76.35173,- 12.55699] ,

{\it cCss}=[ 0.5349466, 0.5396620,- 31.61217, 51.49592,- 29.19613] ,

{\it yCab}= 0.0031 ,

{\it yCss}= 0.06 ,

x=\sqrt { \left( \chi \left( a \right) \right) ^{2}+ \left( \chi \left( b \right) \right) ^{2}} ,

{\it tausMFM}=1/2\,\tau \left( s \right) ,

{\it tauaMFM}=1/2\,\tau \left( a \right) ,

{\it taubMFM}=1/2\,\tau \left( b \right) ,

{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,

z=2\,{\frac {{\it tauaMFM}}{ \left( \rho \left( a \right) \right) ^{5/ 3}}}+2\,{\frac {{\it taubMFM}}{ \left( \rho \left( b \right) \right) ^ {5/3}}}-2\,{\it cf} ,

{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,

{\it ds}=1-{\frac { \left( \chi \left( s \right) \right) ^{2}}{4\,{ \it zs}+4\,{\it cf}}} ,

h \left( x,z,{\it d0},{\it d1},{\it d2},{\it d3},{\it d4},{\it d5}, \alpha \right) ={\frac {{\it d0}}{\lambda \left( x,z,\alpha \right) }}+ {\frac {{\it d1}\,{x}^{2}+{\it d2}\,z}{ \left( \lambda \left( x,z, \alpha \right) \right) ^{2}}}+{\frac {{\it d3}\,{x}^{4}+{\it d4}\,{x}^ {2}z+{\it d5}\,{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3}}} ,

\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,

{\it dCab}=[ 0.3957626,- 0.5614546, 0.01403963, 0.0009831442,- 0.003577176, 0.0] ,

{\it dCss}=[ 0.4650534, 0.1617589, 0.1833657, 0.0004692100,- 0.004990573, 0.0] ,

{\it aCab}= 0.003050 ,

{\it aCss}= 0.005151 ,

f= \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) -\epsilon \left( \rho \left( a \right) ,0 \right) -\epsilon \left( \rho \left( b \right) ,0 \right) \right) \left( {\it Gab} \left( \chi \left( a \right) ,\chi \left( b \right) \right) +h \left( x,z,{\it dCab}_{{0}},{\it dCab}_{{1}},{\it dCab}_{{2}},{\it dCab}_{{3}},{\it dCab}_{{4}},{\it dCab}_{{5}},{\it aCab} \right) \right) ,

g=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} ,

G=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} .

M06LX: M06-L Meta-GGA Exchange Functional

g=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,

G=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,

S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,

F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,

R= 0.804 ,

\mu=1/3\,\delta\,{\pi }^{2} ,

\delta= 0.066725 ,

n=11 ,

A=[ 0.3987756, 0.2548219, 0.3923994,- 2.103655,- 6.302147, 10.97615, 30.97273,- 23.18489,- 56.73480, 21.60364, 34.21814,- 9.049762] ,

{\it Fs} \left( {\it ws} \right) =\sum _{i=0}^{n}A_{{i}}{{\it ws}}^{i} ,

{\it ws}={\frac {{\it ts}-1}{{\it ts}+1}} ,

{\it ts}={\frac {{\it tslsda}}{{\it tausMFM}}} ,

{\it tslsda}=3/10\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} \left( \rho \left( s \right) \right) ^{5/3} ,

{\it eslsda}=-3/8\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\pi }^{-1}} \left( \rho \left( s \right) \right) ^{4/3} ,

d=[ 0.6012244, 0.004748822,- 0.008635108,- 0.000009308062, 0.00004482811, 0.0] ,

\alpha= 0.001867 ,

{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,

h \left( x,z \right) ={\frac {d_{{0}}}{\lambda \left( x,z,\alpha \right) }}+{\frac {d_{{1}}{x}^{2}+d_{{2}}z}{ \left( \lambda \left( x,z ,\alpha \right) \right) ^{2}}}+{\frac {d_{{3}}{x}^{4}+d_{{4}}{x}^{2}z+ d_{{5}}{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3} }} ,

\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,

{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,

{\it tausMFM}=1/2\,\tau \left( s \right) .

M06X: M06 Meta-GGA Exchange Functional

g=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,

G=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,

S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,

F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,

R= 0.804 ,

\mu=1/3\,\delta\,{\pi }^{2} ,

\delta= 0.066725 ,

n=11 ,

A=[ 0.5877943,- 0.1371776, 0.2682367,- 2.515898,- 2.978892, 8.710679, 16.88195,- 4.489724,- 32.99983,- 14.49050, 20.43747, 12.56504] ,

{\it Fs} \left( {\it ws} \right) =\sum _{i=0}^{n}A_{{i}}{{\it ws}}^{i} ,

{\it ws}={\frac {{\it ts}-1}{{\it ts}+1}} ,

{\it ts}={\frac {{\it tslsda}}{{\it tausMFM}}} ,

{\it tslsda}=3/10\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} \left( \rho \left( s \right) \right) ^{5/3} ,

{\it eslsda}=-3/8\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\pi }^{-1}} \left( \rho \left( s \right) \right) ^{4/3} ,

d=[ 0.1422057, 0.0007370319,- 0.01601373, 0.0, 0.0, 0.0] ,

\alpha= 0.001867 ,

{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,

h \left( x,z \right) ={\frac {d_{{0}}}{\lambda \left( x,z,\alpha \right) }}+{\frac {d_{{1}}{x}^{2}+d_{{2}}z}{ \left( \lambda \left( x,z ,\alpha \right) \right) ^{2}}}+{\frac {d_{{3}}{x}^{4}+d_{{4}}{x}^{2}z+ d_{{5}}{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3} }} ,

\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,

{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,

{\it tausMFM}=1/2\,\tau \left( s \right) .

M12C: Meta GGA Correlation Functional

Meta-GGA correlation functional based on first principles, see M. Modrzejewski et al., J. Chem. Phys. 137, 204121 (2012).

MK00: Exchange Functional for Accurate Virtual Orbital Energies

g=-3\,{\frac {\pi \, \left( \rho \left( s \right) \right) ^{3}}{\tau \left( s \right) -1/4\,\upsilon \left( s \right) }} .

MK00B: Exchange Functional for Accurate Virtual Orbital Energies

MK00 with gradient correction of the form of B88X but with different empirical parameter. g=-3\,{\frac {\pi \, \left( \rho \left( s \right) \right) ^{3}}{\tau \left( s \right) -1/4\,\upsilon \left( s \right) }}-{\frac {\beta\, \left( \rho \left( s \right) \right) ^{4/3} \left( \chi \left( s \right) \right) ^{2}}{1+6\,\beta\,\chi \left( s \right) {\it arcsinh} \left( \chi \left( s \right) \right) }} ,

\beta= 0.0016 ,

G=-3\,{\frac {\pi \, \left( \rho \left( s \right) \right) ^{3}}{\tau \left( s \right) -1/4\,\upsilon \left( s \right) }}-{\frac {\beta\, \left( \rho \left( s \right) \right) ^{4/3} \left( \chi \left( s \right) \right) ^{2}}{1+6\,\beta\,\chi \left( s \right) {\it arcsinh} \left( \chi \left( s \right) \right) }} .

P86: .

Gradient correction to VWN. f=\rho\,e+{\frac {{e^{-\Phi}}C \left( r \right) \sigma}{d{\rho}^{4/3}}} ,

r=1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\frac {1}{\pi \,\rho}}} ,

x=\sqrt {r} ,

\zeta={\frac {\rho \left( a \right) -\rho \left( b \right) }{\rho}} ,

k=[ 0.0310907, 0.01554535,-1/6\,{\pi }^{-2}] ,

l=[- 0.10498,- 0.325,- 0.0047584] ,

m=[ 3.72744, 7.06042, 1.13107] ,

n=[ 12.9352, 18.0578, 13.0045] ,

e=\Lambda+\omega\,y \left( 1+h{\zeta}^{4} \right) ,

y={\frac {9}{8}}\, \left( 1+\zeta \right) ^{4/3}+{\frac {9}{8}}\, \left( 1-\zeta \right) ^{4/3}-9/4 ,

h=4/9\,{\frac {\lambda-\Lambda}{ \left( \sqrt [3]{2}-1 \right) \omega}} -1 ,

\Lambda=q \left( k_{{1}},l_{{1}},m_{{1}},n_{{1}} \right) ,

\lambda=q \left( k_{{2}},l_{{2}},m_{{2}},n_{{2}} \right) ,

\omega=q \left( k_{{3}},l_{{3}},m_{{3}},n_{{3}} \right) ,

q \left( A,p,c,d \right) =A \left( \ln \left( {\frac {{x}^{2}}{X \left( x,c,d \right) }} \right) +2\,c\arctan \left( {\frac {Q \left( c ,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{- 1}-cp \left( \ln \left( {\frac { \left( x-p \right) ^{2}}{X \left( x,c ,d \right) }} \right) +2\, \left( c+2\,p \right) \arctan \left( {\frac {Q \left( c,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{-1} \right) \left( X \left( p,c,d \right) \right) ^{-1} \right) ,

Q \left( c,d \right) =\sqrt {4\,d-{c}^{2}} ,

X \left( i,c,d \right) ={i}^{2}+ci+d ,

\Phi= 0.007390075\,{\frac {z\sqrt {\sigma}}{C \left( r \right) {\rho}^{ 7/6}}} ,

d=\sqrt [3]{2}\sqrt { \left( 1/2+1/2\,\zeta \right) ^{5/3}+ \left( 1/2- 1/2\,\zeta \right) ^{5/3}} ,

C \left( r \right) = 0.001667+{\frac { 0.002568+\alpha\,r+\beta\,{r}^{2 }}{1+\xi\,r+\delta\,{r}^{2}+10000\,\beta\,{r}^{3}}} ,

z= 0.11 ,

\alpha= 0.023266 ,

\beta= 0.000007389 ,

\xi= 8.723 ,

\delta= 0.472 .

PBEC: PBE Correlation Functional

f=\rho\, \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) +H \left( d,\rho \left( a \right) ,\rho \left( b \right) \right) \right) ,

G=\rho\, \left( \epsilon \left( \rho \left( s \right) ,0 \right) +C \left( Q,\rho \left( s \right) ,0 \right) \right) ,

d=1/12\,{\frac {\sqrt {\sigma}{3}^{5/6}}{u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \sqrt [6]{{\pi }^{-1}}{\rho}^{ 7/6}}} ,

u \left( \alpha,\beta \right) =1/2\, \left( 1+\zeta \left( \alpha,\beta \right) \right) ^{2/3}+1/2\, \left( 1-\zeta \left( \alpha,\beta \right) \right) ^{2/3} ,

H \left( d,\alpha,\beta \right) =1/2\, \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{\lambda}^{2}\ln \left( 1+2\,{\frac {\iota\, \left( {d}^{2}+A \left( \alpha,\beta \right) {d}^{4} \right) }{\lambda\, \left( 1+A \left( \alpha,\beta \right) {d}^{2}+ \left( A \left( \alpha,\beta \right) \right) ^{2}{d} ^{4} \right) }} \right) {\iota}^{-1} ,

A \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-2\,{ \frac {\iota\,\epsilon \left( \alpha,\beta \right) }{ \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{ \lambda}^{2}}}}}-1 \right) ^{-1} ,

\iota= 0.0716 ,

\lambda=\nu\,\kappa ,

\nu=16\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}}{\pi }} ,

\kappa= 0.004235 ,

Z=- 0.001667 ,

\phi \left( r \right) =\theta \left( r \right) -Z ,

\theta \left( r \right) ={\frac {1}{1000}}\,{\frac { 2.568+\Xi\,r+\Phi \,{r}^{2}}{1+\Lambda\,r+\Upsilon\,{r}^{2}+10\,\Phi\,{r}^{3}}} ,

\Xi= 23.266 ,

\Phi= 0.007389 ,

\Lambda= 8.723 ,

\Upsilon= 0.472 ,

T=[ 0.031091, 0.015545, 0.016887] ,

U=[ 0.21370, 0.20548, 0.11125] ,

V=[ 7.5957, 14.1189, 10.357] ,

W=[ 3.5876, 6.1977, 3.6231] ,

X=[ 1.6382, 3.3662, 0.88026] ,

Y=[ 0.49294, 0.62517, 0.49671] ,

P=[1,1,1] ,

\epsilon \left( \alpha,\beta \right) =e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3 }},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P_{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^{4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2}},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y _{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}} ,U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{4} ,

r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,

\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,

\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,

e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,

c= 1.709921 ,

C \left( d,\alpha,\beta \right) =K \left( Q,\alpha,\beta \right) +M \left( Q,\alpha,\beta \right) ,

M \left( d,\alpha,\beta \right) = 0.5\,\nu\, \left( \phi \left( r \left( \alpha,\beta \right) \right) -\kappa-3/7\,Z \right) {d}^{2}{e^ {- 335.9789467\,{\frac {{3}^{2/3}{d}^{2}}{\sqrt [3]{{\pi }^{5}\rho}}}}} ,

K \left( d,\alpha,\beta \right) = 0.2500000000\,{\lambda}^{2}\ln \left( 1+2\,{\frac {\iota\, \left( {d}^{2}+N \left( \alpha,\beta \right) {d}^{4} \right) }{\lambda\, \left( 1+N \left( \alpha,\beta \right) {d}^{2}+ \left( N \left( \alpha,\beta \right) \right) ^{2}{d} ^{4} \right) }} \right) {\iota}^{-1} ,

N \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-4\,{ \frac {\iota\,\epsilon \left( \alpha,\beta \right) }{{\lambda}^{2}}}}}- 1 \right) ^{-1} ,

Q=1/12\,{\frac {\sqrt {\sigma \left( {\it ss} \right) }\sqrt [3]{2}{3}^ {5/6}}{\sqrt [6]{{\pi }^{-1}}{\rho}^{7/6}}} .

PBESOLC: PBEsol Correlation Functional

PBESOLX: PBEsol Exchange Functional

PBEX: PBE Exchange Functional

g=1/2\,E \left( 2\,\rho \left( s \right) \right) ,

G=1/2\,E \left( 2\,\rho \left( s \right) \right) ,

E \left( n \right) =-3/4\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}{n}^ {4/3}F \left( S \right) }{\pi }} ,

S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,

F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,

R= 0.804 ,

\mu=1/3\,\delta\,{\pi }^{2} ,

\delta= 0.066725 .

PBEXREV: Revised PBE Exchange Functional

Changes the value of the constant R from the original PBEX functional g=1/2\,E \left( 2\,\rho \left( s \right) \right) ,

G=1/2\,E \left( 2\,\rho \left( s \right) \right) ,

E \left( n \right) =-3/4\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}{n}^ {4/3}F \left( S \right) }{\pi }} ,

S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,

F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,

R= 1.245 ,

\mu=1/3\,\delta\,{\pi }^{2} ,

\delta= 0.066725 .

PW86: .

GGA Exchange Functional. g=1/2\,E \left( 2\,\rho \left( s \right) \right) ,

E \left( n \right) =-3/4\,\sqrt [3]{3}\sqrt [3]{{\pi }^{-1}}{n}^{4/3}F \left( S \right) ,

F \left( S \right) = \left( 1+ 1.296\,{S}^{2}+14\,{S}^{4}+ 0.2\,{S}^{6} \right) ^{1/15} ,

S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,

G=1/2\,E \left( 2\,\rho \left( s \right) \right) .

PW91C: Perdew-Wang 1991 GGA Correlation Functional

f=\rho\, \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) +H \left( d,\rho \left( a \right) ,\rho \left( b \right) \right) \right) ,

G=\rho\, \left( \epsilon \left( \rho \left( s \right) ,0 \right) +C \left( Q,\rho \left( s \right) ,0 \right) \right) ,

d=1/12\,{\frac {\sqrt {\sigma}{3}^{5/6}}{u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \sqrt [6]{{\pi }^{-1}}{\rho}^{ 7/6}}} ,

u \left( \alpha,\beta \right) =1/2\, \left( 1+\zeta \left( \alpha,\beta \right) \right) ^{2/3}+1/2\, \left( 1-\zeta \left( \alpha,\beta \right) \right) ^{2/3} ,

H \left( d,\alpha,\beta \right) =L \left( d,\alpha,\beta \right) +J \left( d,\alpha,\beta \right) ,

L \left( d,\alpha,\beta \right) =1/2\, \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{\lambda}^{2}\ln \left( 1+2\,{\frac {\iota\, \left( {d}^{2}+A \left( \alpha,\beta \right) {d}^{4} \right) }{\lambda\, \left( 1+A \left( \alpha,\beta \right) {d}^{2}+ \left( A \left( \alpha,\beta \right) \right) ^{2}{d} ^{4} \right) }} \right) {\iota}^{-1} ,

J \left( d,\alpha,\beta \right) =\nu\, \left( \phi \left( r \left( \alpha,\beta \right) \right) -\kappa-3/7\,Z \right) \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{d}^ {2}{e^{-{\frac {400}{3}}\,{\frac { \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{4}{3}^{2/3}{d}^{2}} {\sqrt [3]{{\pi }^{5}\rho}}}}} ,

A \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-2\,{ \frac {\iota\,\epsilon \left( \alpha,\beta \right) }{ \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{ \lambda}^{2}}}}}-1 \right) ^{-1} ,

\iota= 0.09 ,

\lambda=\nu\,\kappa ,

\nu=16\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}}{\pi }} ,

\kappa= 0.004235 ,

Z=- 0.001667 ,

\phi \left( r \right) =\theta \left( r \right) -Z ,

\theta \left( r \right) ={\frac {1}{1000}}\,{\frac { 2.568+\Xi\,r+\Phi \,{r}^{2}}{1+\Lambda\,r+\Upsilon\,{r}^{2}+10\,\Phi\,{r}^{3}}} ,

\Xi= 23.266 ,

\Phi= 0.007389 ,

\Lambda= 8.723 ,

\Upsilon= 0.472 ,

T=[ 0.031091, 0.015545, 0.016887] ,

U=[ 0.21370, 0.20548, 0.11125] ,

V=[ 7.5957, 14.1189, 10.357] ,

W=[ 3.5876, 6.1977, 3.6231] ,

X=[ 1.6382, 3.3662, 0.88026] ,

Y=[ 0.49294, 0.62517, 0.49671] ,

P=[1,1,1] ,

\epsilon \left( \alpha,\beta \right) =e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3 }},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P_{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^{4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2}},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y _{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}} ,U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{4} ,

r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,

\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,

\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,

e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,

c= 1.709921 ,

C \left( d,\alpha,\beta \right) =K \left( Q,\alpha,\beta \right) +M \left( Q,\alpha,\beta \right) ,

M \left( d,\alpha,\beta \right) = 0.5\,\nu\, \left( \phi \left( r \left( \alpha,\beta \right) \right) -\kappa-3/7\,Z \right) {d}^{2}{e^ {- 335.9789467\,{\frac {{3}^{2/3}{d}^{2}}{\sqrt [3]{{\pi }^{5}\rho}}}}} ,

K \left( d,\alpha,\beta \right) = 0.2500000000\,{\lambda}^{2}\ln \left( 1+2\,{\frac {\iota\, \left( {d}^{2}+N \left( \alpha,\beta \right) {d}^{4} \right) }{\lambda\, \left( 1+N \left( \alpha,\beta \right) {d}^{2}+ \left( N \left( \alpha,\beta \right) \right) ^{2}{d} ^{4} \right) }} \right) {\iota}^{-1} ,

N \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-4\,{ \frac {\iota\,\epsilon \left( \alpha,\beta \right) }{{\lambda}^{2}}}}}- 1 \right) ^{-1} ,

Q=1/12\,{\frac {\sqrt {\sigma \left( {\it ss} \right) }\sqrt [3]{2}{3}^ {5/6}}{\sqrt [6]{{\pi }^{-1}}{\rho}^{7/6}}} .

PW91X: Perdew-Wang 1991 GGA Exchange Functional

g=1/2\,E \left( 2\,\rho \left( s \right) \right) ,

G=1/2\,E \left( 2\,\rho \left( s \right) \right) ,

E \left( n \right) =-3/4\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}{n}^ {4/3}F \left( S \right) }{\pi }} ,

S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,

F \left( S \right) ={\frac {1+ 0.19645\,S{\it arcsinh} \left( 7.7956\, S \right) + \left( 0.2743- 0.1508\,{e^{-100\,{S}^{2}}} \right) {S}^{2} }{1+ 0.19645\,S{\it arcsinh} \left( 7.7956\,S \right) + 0.004\,{S}^{4} }} .

PW92C: Perdew-Wang 1992 GGA Correlation Functional

Electron-gas correlation energy. T=[ 0.031091, 0.015545, 0.016887] ,

U=[ 0.21370, 0.20548, 0.11125] ,

V=[ 7.5957, 14.1189, 10.357] ,

W=[ 3.5876, 6.1977, 3.6231] ,

X=[ 1.6382, 3.3662, 0.88026] ,

Y=[ 0.49294, 0.62517, 0.49671] ,

P=[1,1,1] ,

f=\rho\,\epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) ,

\epsilon \left( \alpha,\beta \right) =e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3 }},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P_{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^{4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2}},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y _{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}} ,U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{4} ,

r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,

\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,

\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,

e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,

c= 1.709921 .

STEST: Test for number of electrons

g=\rho \left( s \right) .

TFKE: Thomas-Fermi Kinetic Energy

Automatically generated Thomas-Fermi Kinetic Energy. g={\it ctf}\, \left( \rho \left( s \right) \right) ^{5/3} ,

{\it ctf}=3/10\,{2}^{2/3}{3}^{2/3} \left( {\pi }^{2} \right) ^{2/3} .

TH1: Tozer and Handy 1998

Density and gradient dependent first row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}}, 2,3/2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3,1] ,

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0] ,

v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0,0] ,

w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0] ,

\omega=[- 0.728255, 0.331699,- 1.02946, 0.235703,- 0.0876221, 0.140854, 0.0336982,- 0.0353615, 0.00497930,- 0.0645900, 0.0461795,- 0.00757191, - 0.00242717, 0.0428140,- 0.0744891, 0.0386577,- 0.352519, 2.19805,- 3.72927, 1.94441, 0.128877] ,

n=21 ,

R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,

S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,

X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,

Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,

f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,

G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .

TH2: .

Density and gradient dependent first row exchange-correlation functional. t=[{\frac {13}{12}},7/6,4/3,3/2,5/3,{\frac {17}{12}},3/2,5/3,{\frac {11 }{6}},5/3,{\frac {11}{6}},2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3] ,

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1] ,

v=[0,0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0] ,

w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0] ,

\omega=[ 0.678831,- 1.75821, 1.27676,- 1.60789, 0.365610,- 0.181327, 0.146973, 0.147141,- 0.0716917,- 0.0407167, 0.0214625,- 0.000768156, 0.0310377,- 0.0720326, 0.0446562,- 0.266802, 1.50822,- 1.94515, 0.679078] ,

n=19 ,

R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,

S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,

X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,

Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,

f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,

G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .

TH3: .

Density and gradient dependent first and second row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,{\frac {17}{12}},3/2,5/3,{\frac {11}{6}},5/3,{\frac {11}{6}},2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3,{\frac {13}{12}}] ,

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0] ,

v=[0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0,0] ,

w=[0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0] ,

\omega=[- 0.142542,- 0.783603,- 0.188875, 0.0426830,- 0.304953, 0.430407,- 0.0997699, 0.00355789,- 0.0344374, 0.0192108,- 0.00230906, 0.0235189,- 0.0331157, 0.0121316, 0.441190,- 2.27167, 4.03051,- 2.28074, 0.0360204] ,

n=19 ,

R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,

S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,

X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,

Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,

f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,

G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .

TH4: .

Density an gradient dependent first and second row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,{\frac {17}{12}},3/2,5/3,{\frac {11}{6}},5/3,{\frac {11}{6}},2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3,{\frac {13}{12}}] ,

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0] ,

v=[0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0,0] ,

w=[0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0] ,

\omega=[ 0.0677353,- 1.06763,- 0.0419018, 0.0226313,- 0.222478, 0.283432,- 0.0165089,- 0.0167204,- 0.0332362, 0.0162254,- 0.000984119, 0.0376713,- 0.0653419, 0.0222835, 0.375782,- 1.90675, 3.22494,- 1.68698,- 0.0235810] ,

n=19 ,

R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,

S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,

X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,

Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,

f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,

G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .

THGFC: .

Density and gradient dependent first row exchange-correlation functional for closed shell systems. Total energies are improved by adding DN, where N is the number of electrons and D=0.1863. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}}, 2] ,

v=[0,0,0,0,1,1,1,1,2,2,2,2] ,

\omega=[- 0.864448, 0.565130,- 1.27306, 0.309681,- 0.287658, 0.588767,- 0.252700, 0.0223563, 0.0140131,- 0.0826608, 0.0556080,- 0.00936227] ,

n=12 ,

R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,

X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,

f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}X_{{i}} ,

G=\sum _{i=1}^{n}1/2\,{\frac {\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} .

THGFCFO: .

Density and gradient dependent first row exchange-correlation functional. FCFO = FC + open shell fitting. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}}, 2,3/2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3] ,

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1] ,

v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0] ,

w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0] ,

\omega=[- 0.864448, 0.565130,- 1.27306, 0.309681,- 0.287658, 0.588767,- 0.252700, 0.0223563, 0.0140131,- 0.0826608, 0.0556080,- 0.00936227,- 0.00677146, 0.0515199,- 0.0874213, 0.0423827, 0.431940,- 0.691153,- 0.637866, 1.07565] ,

n=20 ,

R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,

S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,

X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,

Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,

f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,

G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .

THGFCO: .

Density and gradient dependent first row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}}, 2,3/2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3] ,

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1] ,

v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0] ,

w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0] ,

\omega=[- 0.962998, 0.860233,- 1.54092, 0.381602,- 0.210208, 0.391496,- 0.107660,- 0.0105324, 0.00837384,- 0.0617859, 0.0383072,- 0.00526905,- 0.00381514, 0.0321541,- 0.0568280, 0.0288585, 0.368326,- 0.328799,- 1.22595, 1.36412] ,

n=20 ,

R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,

S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,

X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,

Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,

f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,

G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .

THGFL: .

Density dependent first row exchange-correlation functional for closed shell systems. t=[7/6,4/3,3/2,5/3] ,

\omega=[- 1.06141, 0.898203,- 1.34439, 0.302369] ,

n=4 ,

R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,

f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}} .

TPSSC: TPSS Correlation Functional

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).

TPSSX: TPSS Exchange Functional

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).

VSXC: .

p=[- 0.98, 0.3271, 0.7035] ,

q=[- 0.003557,- 0.03229, 0.007695] ,

r=[ 0.00625,- 0.02942, 0.05153] ,

t=[- 0.00002354, 0.002134, 0.00003394] ,

u=[- 0.0001283,- 0.005452,- 0.001269] ,

v=[ 0.0003575, 0.01578, 0.001296] ,

\alpha=[ 0.001867, 0.005151, 0.00305] ,

g= \left( \rho \left( s \right) \right) ^{4/3}F \left( \chi \left( s \right) ,{\it zs},p_{{1}},q_{{1}},r_{{1}},t_{{1}},u_{{1}},v_{{1}}, \alpha_{{1}} \right) +{\it ds}\,\epsilon \left( \rho \left( s \right) ,0 \right) F \left( \chi \left( s \right) ,{\it zs},p_{{2}},q_{{2}},r_{{2 }},t_{{2}},u_{{2}},v_{{2}},\alpha_{{2}} \right) ,

G= \left( \rho \left( s \right) \right) ^{4/3}F \left( \chi \left( s \right) ,{\it zs},p_{{1}},q_{{1}},r_{{1}},t_{{1}},u_{{1}},v_{{1}}, \alpha_{{1}} \right) +{\it ds}\,\epsilon \left( \rho \left( s \right) ,0 \right) F \left( \chi \left( s \right) ,{\it zs},p_{{2}},q_{{2}},r_{{2 }},t_{{2}},u_{{2}},v_{{2}},\alpha_{{2}} \right) ,

f=F \left( x,z,p_{{3}},q_{{3}},r_{{3}},t_{{3}},u_{{3}},v_{{3}},\alpha_{ {3}} \right) \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) -\epsilon \left( \rho \left( a \right) ,0 \right) -\epsilon \left( \rho \left( b \right) ,0 \right) \right) ,

x= \left( \chi \left( a \right) \right) ^{2}+ \left( \chi \left( b \right) \right) ^{2} ,

{\it zs}={\frac {\tau \left( s \right) }{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,

z={\frac {\tau \left( a \right) }{ \left( \rho \left( a \right) \right) ^{5/3}}}+{\frac {\tau \left( b \right) }{ \left( \rho \left( b \right) \right) ^{5/3}}}-2\,{\it cf} ,

{\it ds}=1-{\frac { \left( \chi \left( s \right) \right) ^{2}}{4\,{ \it zs}+4\,{\it cf}}} ,

F \left( x,z,p,q,c,d,e,f,\alpha \right) ={\frac {p}{\lambda \left( x,z, \alpha \right) }}+{\frac {q{x}^{2}+cz}{ \left( \lambda \left( x,z, \alpha \right) \right) ^{2}}}+{\frac {d{x}^{4}+e{x}^{2}z+f{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3}}} ,

\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,

{\it cf}=3/5\,{3}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,

T=[ 0.031091, 0.015545, 0.016887] ,

U=[ 0.21370, 0.20548, 0.11125] ,

V=[ 7.5957, 14.1189, 10.357] ,

W=[ 3.5876, 6.1977, 3.6231] ,

X=[ 1.6382, 3.3662, 0.88026] ,

Y=[ 0.49294, 0.62517, 0.49671] ,

P=[1,1,1] ,

\epsilon \left( \alpha,\beta \right) = \left( \alpha+\beta \right) \left( e \left( l \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}} ,W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( l \left( \alpha,\beta \right) ,T_{{3}},U_{{3}},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P _{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^ {4} \right) }{c}}+ \left( e \left( l \left( \alpha,\beta \right) ,T_{{2 }},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y_{{2}},P_{{2}} \right) -e \left( l \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y _{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{ 4} \right) ,

l \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,

\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,

\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,

e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,

c= 1.709921 .

VW: von Weizsäcker kinetic energy

Automatically generated von Weizsäcker kinetic energy. g={\frac {c\sigma \left( {\it ss} \right) }{\rho \left( s \right) }} ,

G={\frac {c\sigma \left( {\it ss} \right) }{\rho \left( s \right) }} ,

c=1/8 .

VWN3: Vosko-Wilk-Nusair (1980) III local correlation energy

VWN 1980(III) functional x=1/4\,\sqrt [6]{3}{4}^{5/6}\sqrt [6]{{\frac {1}{\pi \,\rho}}} ,

\zeta={\frac {\rho \left( a \right) -\rho \left( b \right) }{\rho}} ,

f=\rho\,e ,

k=[ 0.0310907, 0.01554535,-1/6\,{\pi }^{-2}] ,

l=[- 0.409286,- 0.743294,- 0.228344] ,

m=[ 13.0720, 20.1231, 1.06835] ,

n=[ 42.7198, 101.578, 11.4813] ,

e=\Lambda+z \left( \lambda-\Lambda \right) ,

y={\frac {9}{8}}\, \left( 1+\zeta \right) ^{4/3}+{\frac {9}{8}}\, \left( 1-\zeta \right) ^{4/3}-9/4 ,

\Lambda=q \left( k_{{1}},l_{{1}},m_{{1}},n_{{1}} \right) ,

\lambda=q \left( k_{{2}},l_{{2}},m_{{2}},n_{{2}} \right) ,

q \left( A,p,c,d \right) =A \left( \ln \left( {\frac {{x}^{2}}{X \left( x,c,d \right) }} \right) +2\,c\arctan \left( {\frac {Q \left( c ,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{- 1}-cp \left( \ln \left( {\frac { \left( x-p \right) ^{2}}{X \left( x,c ,d \right) }} \right) +2\, \left( c+2\,p \right) \arctan \left( {\frac {Q \left( c,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{-1} \right) \left( X \left( p,c,d \right) \right) ^{-1} \right) ,

Q \left( c,d \right) =\sqrt {4\,d-{c}^{2}} ,

X \left( i,c,d \right) ={i}^{2}+ci+d ,

z=4\,{\frac {y}{9\,\sqrt [3]{2}-9}} .

VWN5: Vosko-Wilk-Nusair (1980) V local correlation energy

VWN 1980(V) functional. The fitting parameters for \Delta\varepsilon_{c}(r_{s},\zeta)_{V} appear in the caption of table 7 in the reference. x=1/4\,\sqrt [6]{3}{4}^{5/6}\sqrt [6]{{\frac {1}{\pi \,\rho}}} ,

\zeta={\frac {\rho \left( a \right) -\rho \left( b \right) }{\rho}} ,

f=\rho\,e ,

k=[ 0.0310907, 0.01554535,-1/6\,{\pi }^{-2}] ,

l=[- 0.10498,- 0.325,- 0.0047584] ,

m=[ 3.72744, 7.06042, 1.13107] ,

n=[ 12.9352, 18.0578, 13.0045] ,

e=\Lambda+\alpha\,y \left( 1+h{\zeta}^{4} \right) ,

y={\frac {9}{8}}\, \left( 1+\zeta \right) ^{4/3}+{\frac {9}{8}}\, \left( 1-\zeta \right) ^{4/3}-9/4 ,

h=4/9\,{\frac {\lambda-\Lambda}{ \left( \sqrt [3]{2}-1 \right) \alpha}} -1 ,

\Lambda=q \left( k_{{1}},l_{{1}},m_{{1}},n_{{1}} \right) ,

\lambda=q \left( k_{{2}},l_{{2}},m_{{2}},n_{{2}} \right) ,

\alpha=q \left( k_{{3}},l_{{3}},m_{{3}},n_{{3}} \right) ,

q \left( A,p,c,d \right) =A \left( \ln \left( {\frac {{x}^{2}}{X \left( x,c,d \right) }} \right) +2\,c\arctan \left( {\frac {Q \left( c ,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{- 1}-cp \left( \ln \left( {\frac { \left( x-p \right) ^{2}}{X \left( x,c ,d \right) }} \right) +2\, \left( c+2\,p \right) \arctan \left( {\frac {Q \left( c,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{-1} \right) \left( X \left( p,c,d \right) \right) ^{-1} \right) ,

Q \left( c,d \right) =\sqrt {4\,d-{c}^{2}} ,

X \left( i,c,d \right) ={i}^{2}+ci+d .

XC-M05: M05 Meta-GGA Exchange-Correlation Functional

Here it means M05 exchange-correlation part which excludes HF exact exchange term. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005).

XC-M05-2X: M05-2X Meta-GGA Exchange-Correlation Functional

Here it means M05-2X exchange-correlation part which excludes HF exact exchange term. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).

XC-M06: M06 Meta-GGA Exchange-Correlation Functional

Here it means M06 exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

XC-M06-2X: M06-2X Meta-GGA Exchange-Correlation Functional

Here it means M06-2X exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

XC-M06-HF: M06-HF Meta-GGA Exchange-Correlation Functional

Here it means M06-HF exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006).

XC-M06-L: M06-L Meta-GGA Exchange-Correlation Functional

Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).

XC-M08-HX: M08-HX Meta-GGA Exchange-Correlation Functional

Here it means M08-HX exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).

XC-M08-SO: M08-SO Meta-GGA Exchange-Correlation Functional

Here it means M08-SO exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).

XC-M11-L: M11-L Exchange-Correlation Functional

R. Peverati and D. G. Truhlar, Journal of Physical Chemistry Letters 3, 117 (2012).

XC-SOGGA: SOGGA Exchange-Correlation Functional

Y. Zhao and D. G. Truhlar, J. Chem. Phys. 128, 184109 (2008).

XC-SOGGA11: SOGGA11 Exchange-Correlation Functional

R. Peverati, Y. Zhao and D. G. Truhlar, J. Phys. Chem. Lett. 2 (16), 1991 (2011).

XC-SOGGA11-X: SOGGA11-X Exchange-Correlation Functional

Here it means SOGGA11-X exchange-correlation part which excludes HF exact exchange term. R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011).