Divergence free semiempirical gradient-corrected exchange energy functional. λ=γ in ref. g=−c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,
G=−c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,
c=3/83√342/33√π−1,
β=0.0076,
λ=0.004.
B86 with modified gradient correction for large density gradients. g=−c(ρ(s))4/3−β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5,
G=−c(ρ(s))4/3−β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5,
c=3/83√342/33√π−1,
β=0.00375,
λ=0.007.
Re-optimised β of B86 used in part 3 of Becke’s 1997 paper. g=−c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,
G=−c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,
c=3/83√342/33√π−1,
β=0.00787,
λ=0.004.
G=−(ρ(s))4/3(c+β(χ(s))21+6βχ(s)arcsinh(χ(s))),
g=−(ρ(s))4/3(c+β(χ(s))21+6βχ(s)arcsinh(χ(s))),
c=3/83√342/33√π−1,
β=0.0042.
Correlation functional depending on B86MGC exchange functional with empirical atomic parameters, t and u. The exchange functional that is used in conjunction with B88C should replace B88MGC here. f=−0.8ρ(a)ρ(b)q2(1−ln(1+q)q),
q=t(x+y),
x=0.5(c3√ρ(a)+β(χ(a))23√ρ(a)(1+λ(χ(a))2)4/5)−1,
y=0.5(c3√ρ(b)+β(χ(b))23√ρ(b)(1+λ(χ(b))2)4/5)−1,
t=0.63,
g=−0.01ρ(s)dz4(1−2ln(1+1/2z)z),
z=2ur,
r=0.5ρ(s)(c(ρ(s))4/3+β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5)−1,
u=0.96,
d=τ(s)−1/4σ(ss)ρ(s),
G=−0.01ρ(s)dz4(1−2ln(1+1/2z)z),
c=3/83√342/33√π−1,
β=0.00375,
λ=0.007.
tau dependent Dynamical correlation functional. T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
f=E1+l((χ(a))2+(χ(b))2),
g=Fϵ(ρ(s),0)H(1+ν(χ(s))2)2,
G=Fϵ(ρ(s),0)H(1+ν(χ(s))2)2,
E=ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0),
l=0.0031,
F=τ(s)−1/4σ(ss)ρ(s),
H=3/562/3(π2)2/3(ρ(s))5/3,
ν=0.038,
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
This functional needs to be mixed with 0.1943*exact exchange. T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.9454,0.7471,−4.5961],
B=[0.1737,2.3487,−2.4868],
C=[0.8094,0.5073,0.7481],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),
G=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
Re-parameterization of the B97 functional in a self-consistent procedure by Hamprecht et al. This functional needs to be mixed with 0.21*exact exchange. T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.955689,0.788552,−5.47869],
B=[0.0820011,2.71681,−2.87103],
C=[0.789518,0.573805,0.660975],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),
G=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)
K=12∑sρsUs, where Us=−(1−e−x−xe−x/2)/b, b=x3e−x8πρs and x is defined by the nonlinear equation xe−2x/3x−2=2π2/3ρ5/3s3Qs, where Qs=(υs−2γDs)/6, Ds=τs−σss4ρs and γ=1.
A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)
As for BR
but with γ=0.8.
Hybrid exchange-correlation functional comprimising Becke’s 1998 exchange and Wigner’s spin-polarised correlation functionals. α=−3/83√342/33√π−1,
g=α(ρ(s))4/3−β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),
G=α(ρ(s))4/3−β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),
f=−4cρ(a)ρ(b)ρ−1(1+d3√ρ)−1,
β=0.0042,
c=0.04918,
d=0.349.
R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1974); C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988)
CS1
is formally identical to CS2
, except for a reformulation in which the terms involving υ are eliminated by integration by parts. This makes the functional more economical to evaluate. In the limit of exact quadrature, CS1
and CS2
are identical, but small numerical differences appear with finite integration grids.
R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1974); C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988)
CS2
is defined through K=−a(ρ+2bρ−5/3[ραtα+ρβtβ−ρtW]e−cρ−1/31+dρ−1/3) where tα=τα2−υα8tβ=τβ2−υβ8tW=18σρ−12υ and the constants are a=0.04918,b=0.132,c=0.2533,d=0.349.
Automatically generated Slater-Dirac exchange. g=−c(ρ(s))4/3,
c=3/83√342/33√π−1.
Local-density approximation of correlation energy
for short-range interelectronic interaction erf(μr21)/r12,
S. Paziani, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. B 73, 155111 (2006).
ϵSRc(rs,ζ,μ)=ϵPW92c(rs,ζ)−[ϕ2(ζ)]3Q(μ√rsϕ2(ζ))+a1μ3+a2μ4+a3μ5+a4μ6+a5μ8(1+b20μ2)4, where Q(x)=2ln(2)−2π2ln(1+ax+bx2+cx31+ax+dx2), with a=5.84605, c=3.91744, d=3.44851, and b=d−3πα/(4ln(2)−4). The parameters ai(rs,ζ) are given by a1=4b60C3+b80C5,a2=4b60C2+b80C4+6b40ϵPW92c,a3=b80C3,a4=b80C2+4b60ϵPW92c,a5=b80ϵPW92c, with C2=−3(1−ζ2)gc(0,rs,ζ=0)8r3sC3=−(1−ζ2)g(0,rs,ζ=0)√2πr3sC4=−9c4(rs,ζ)64r3sC5=−9c5(rs,ζ)40√2πr3sc4(rs,ζ)=(1+ζ2)2g″(0,rs(21+ζ)1/3,ζ=1)+(1−ζ2)2×g″(0,rs(21−ζ)1/3,ζ=1)+(1−ζ2)D2(rs)−ϕ8(ζ)5α2r2sc5(rs,ζ)=(1+ζ2)2g″(0,rs(21+ζ)1/3,ζ=1)+(1−ζ2)2×g″(0,rs(21−ζ)1/3,ζ=1)+(1−ζ2)D3(rs), and [b0(rs)=0.784949rs[g″(0,rs,ζ=1)=25/35α2r2s1−0.02267rs(1+0.4319rs+0.04r2s)[D2(rs)=e−0.547rsr2s(−0.388rs+0.676r2s)[D3(rs)=e−0.31rsr3s(−4.95rs+r2s). Finally, ϵPW92c(rs,ζ) is the Perdew-Wang parametrization of the correlation energy of the standard uniform electron gas [J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)], and g(0,rs,ζ=0)=12(1−Brs+Cr2s+Dr3s+Er4s)e−drs, is the on-top pair-distribution function of the standard jellium model [P. Gori-Giorgi and J.P. Perdew, Phys. Rev. B 64, 155102 (2001)], where B=−0.0207, C=0.08193, D=−0.01277, E=0.001859, d=0.7524. The correlation part of the on-top pair-distribution function is gc(0,rs,ζ=0)=g(0,rs,ζ=0)−12.
Toulouse-Colonna-Savin range-separated correlation functional based on PBE, see J. Toulouse et al., J. Chem. Phys. 122, 014110 (2005).
Hartree-Fock exact exchange functional can be used to construct hybrid exchange-correlation functional.
Local-density approximation of exchange energy
for short-range interelectronic interaction erf(μr12)/r12,
A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J.M. Seminario (Elsevier, Amsterdam, 1996).
ϵSRx(rs,ζ,μ)=34πϕ4(ζ)αrs−12(1+ζ)4/3fx(rs,μ(1+ζ)−1/3)+12(1−ζ)4/3fx(rs,μ(1−ζ)−1/3) with ϕn(ζ)=12[(1+ζ)n/3+(1−ζ)n/3], fx(rs,μ)=−μπ[(2y−4y3)e−1/4y2−3y+4y3+√πerf(12y)],y=μαrs2, and α=(4/9π)1/3.
Toulouse-Colonna-Savin range-separated exchange functional based on PBE, see J. Toulouse et al., J. Chem. Phys. 122, 014110 (2005).
α=−3/83√342/33√π−1,
g=(ρ(s))4/3(α−1137(χ(s))3/2),
G=(ρ(s))4/3(α−1137(χ(s))3/2).
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.51473,6.9298,−24.707,23.110,−11.323],
B=[0.48951,−0.2607,0.4329,−1.9925,2.4853],
C=[1.09163,−0.7472,5.0783,−4.1075,1.1717],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.542352,7.01464,−28.3822,35.0329,−20.4284],
B=[0.562576,−0.0171436,−1.30636,1.05747,0.885429],
C=[1.09025,−0.799194,5.57212,−5.86760,3.04544],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)+e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.72997,3.35287,−11.543,8.08564,−4.47857],
B=[0.222601,−0.0338622,−0.012517,−0.802496,1.55396],
C=[1.0932,−0.744056,5.5992,−6.78549,4.49357],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
Henderson-Janesko-Scuseria range-separated exchange functional based on a model of an exchange hole derived by a constraint-satisfaction technique, see T. M. Henderson et al., J. Chem. Phys. 128, 194105 (2008).
LSDA exchange functional with density represented as a function of τ. g=1/2E(2τ(s)),
E(α)=1/9c54/55√9(α3√3(π2)2/3)4/5,
c=−3/43√33√π−1,
G=1/2E(2τ(s)).
C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988); B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 157, 200 (1989). f=−4Aρ(a)ρ(b)(1+d3√ρ)−1ρ−1−ABω(ρ(a)ρ(b)(822/3cf((ρ(a))8/3+(ρ(b))8/3)+(4718−718δ)σ−(5/2−1/18δ)(σ(aa)+σ(bb))−1/9(δ−11)(ρ(a)σ(aa)ρ+ρ(b)σ(bb)ρ))−2/3ρ2σ+(2/3ρ2−(ρ(a))2)σ(bb)+(2/3ρ2−(ρ(b))2)σ(aa)),
ω=e−c3√ρρ−11/3(1+d3√ρ)−1,
δ=c3√ρ+d13√ρ(1+d3√ρ)−1,
cf=3/1032/3(π2)2/3,
A=0.04918,
B=0.132,
c=0.2533,
d=0.349.
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
tausMFM=1/2τ(s),
ds=2tausMFM−1/4σ(ss)ρ(s),
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[1.0,1.09297,−3.79171,2.82810,−10.58909],
cCss=[1.0,−3.05430,7.61854,1.47665,−11.92365],
yCab=0.0031,
yCss=0.06,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))Gab(χ(a),χ(b)),
g=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM,
G=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM.
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[1.0,−0.56833,−1.30057,5.50070,9.06402,−32.21075,−23.73298,70.22996,29.88614,−60.25778,−13.22205,15.23694],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
tausMFM=1/2τ(s).
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
tausMFM=1/2τ(s),
ds=2tausMFM−1/4σ(ss)ρ(s),
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[1.0,3.78569,−14.15261,−7.46589,17.94491],
cCss=[1.0,3.77344,−26.04463,30.69913,−9.22695],
yCab=0.0031,
yCss=0.06,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))Gab(χ(a),χ(b)),
g=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM,
G=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM.
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[1.0,0.08151,−0.43956,−3.22422,2.01819,8.79431,−0.00295,9.82029,−4.82351,−48.17574,3.64802,34.02248],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
tausMFM=1/2τ(s).
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[0.8833596,33.57972,−70.43548,49.78271,−18.52891],
cCss=[0.3097855,−5.528642,13.47420,−32.13623,28.46742],
yCab=0.0031,
yCss=0.06,
x=√(χ(a))2+(χ(b))2,
tausMFM=1/2τ(s),
tauaMFM=1/2τ(a),
taubMFM=1/2τ(b),
zs=2tausMFM(ρ(s))5/3−cf,
z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/3−2cf,
cf=3/562/3(π2)2/3,
ds=1−(χ(s))24zs+4cf,
h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
dCab=[0.1166404,−0.09120847,−0.06726189,0.00006720580,0.0008448011,0.0],
dCss=[0.6902145,0.09847204,0.2214797,−0.001968264,−0.006775479,0.0],
aCab=0.003050,
aCss=0.005151,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),
g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,
G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[0.4600000,−0.2206052,−0.09431788,2.164494,−2.556466,−14.22133,15.55044,35.98078,−27.22754,−39.24093,15.22808,15.22227],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
tausMFM=1/2τ(s).
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c= 1.709921 ,
{\it Gab} \left( {\it chia},{\it chib} \right) =\sum _{i=0}^{n}{\it cCab}_{{i}} \left( {\frac {{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib}}^{2} \right) }{1+{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib} }^{2} \right) }} \right) ^{i} ,
{\it Gss} \left( {\it chis} \right) =\sum _{i=0}^{n}{\it cCss}_{{i}} \left( {\frac {{\it yCss}\,{{\it chis}}^{2}}{1+{\it yCss}\,{{\it chis} }^{2}}} \right) ^{i} ,
n=4 ,
{\it cCab}=[ 3.741593, 218.7098,- 453.1252, 293.6479,- 62.87470] ,
{\it cCss}=[ 0.5094055,- 1.491085, 17.23922,- 38.59018, 28.45044] ,
{\it yCab}= 0.0031 ,
{\it yCss}= 0.06 ,
x=\sqrt { \left( \chi \left( a \right) \right) ^{2}+ \left( \chi \left( b \right) \right) ^{2}} ,
{\it tausMFM}=1/2\,\tau \left( s \right) ,
{\it tauaMFM}=1/2\,\tau \left( a \right) ,
{\it taubMFM}=1/2\,\tau \left( b \right) ,
{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,
z=2\,{\frac {{\it tauaMFM}}{ \left( \rho \left( a \right) \right) ^{5/ 3}}}+2\,{\frac {{\it taubMFM}}{ \left( \rho \left( b \right) \right) ^ {5/3}}}-2\,{\it cf} ,
{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,
{\it ds}=1-{\frac { \left( \chi \left( s \right) \right) ^{2}}{4\,{ \it zs}+4\,{\it cf}}} ,
h \left( x,z,{\it d0},{\it d1},{\it d2},{\it d3},{\it d4},{\it d5}, \alpha \right) ={\frac {{\it d0}}{\lambda \left( x,z,\alpha \right) }}+ {\frac {{\it d1}\,{x}^{2}+{\it d2}\,z}{ \left( \lambda \left( x,z, \alpha \right) \right) ^{2}}}+{\frac {{\it d3}\,{x}^{4}+{\it d4}\,{x}^ {2}z+{\it d5}\,{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3}}} ,
\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,
{\it dCab}=[- 2.741539,- 0.6720113,- 0.07932688, 0.001918681,- 0.002032902, 0.0] ,
{\it dCss}=[ 0.4905945,- 0.1437348, 0.2357824, 0.001871015,- 0.003788963, 0.0] ,
{\it aCab}= 0.003050 ,
{\it aCss}= 0.005151 ,
f= \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) -\epsilon \left( \rho \left( a \right) ,0 \right) -\epsilon \left( \rho \left( b \right) ,0 \right) \right) \left( {\it Gab} \left( \chi \left( a \right) ,\chi \left( b \right) \right) +h \left( x,z,{\it dCab}_{{0}},{\it dCab}_{{1}},{\it dCab}_{{2}},{\it dCab}_{{3}},{\it dCab}_{{4}},{\it dCab}_{{5}},{\it aCab} \right) \right) ,
g=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} ,
G=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} .
T=[ 0.031091, 0.015545, 0.016887] ,
U=[ 0.21370, 0.20548, 0.11125] ,
V=[ 7.5957, 14.1189, 10.357] ,
W=[ 3.5876, 6.1977, 3.6231] ,
X=[ 1.6382, 3.3662, 0.88026] ,
Y=[ 0.49294, 0.62517, 0.49671] ,
P=[1,1,1] ,
\epsilon \left( \alpha,\beta \right) = \left( \alpha+\beta \right) \left( e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}} ,W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3}},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P _{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^ {4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2 }},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y_{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y _{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{ 4} \right) ,
r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,
c= 1.709921 ,
{\it Gab} \left( {\it chia},{\it chib} \right) =\sum _{i=0}^{n}{\it cCab}_{{i}} \left( {\frac {{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib}}^{2} \right) }{1+{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib} }^{2} \right) }} \right) ^{i} ,
{\it Gss} \left( {\it chis} \right) =\sum _{i=0}^{n}{\it cCss}_{{i}} \left( {\frac {{\it yCss}\,{{\it chis}}^{2}}{1+{\it yCss}\,{{\it chis} }^{2}}} \right) ^{i} ,
n=4 ,
{\it cCab}=[ 1.674634, 57.32017, 59.55416,- 231.1007, 125.5199] ,
{\it cCss}=[ 0.1023254,- 2.453783, 29.13180,- 34.94358, 23.15955] ,
{\it yCab}= 0.0031 ,
{\it yCss}= 0.06 ,
x=\sqrt { \left( \chi \left( a \right) \right) ^{2}+ \left( \chi \left( b \right) \right) ^{2}} ,
{\it tausMFM}=1/2\,\tau \left( s \right) ,
{\it tauaMFM}=1/2\,\tau \left( a \right) ,
{\it taubMFM}=1/2\,\tau \left( b \right) ,
{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,
z=2\,{\frac {{\it tauaMFM}}{ \left( \rho \left( a \right) \right) ^{5/ 3}}}+2\,{\frac {{\it taubMFM}}{ \left( \rho \left( b \right) \right) ^ {5/3}}}-2\,{\it cf} ,
{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,
{\it ds}=1-{\frac { \left( \chi \left( s \right) \right) ^{2}}{4\,{ \it zs}+4\,{\it cf}}} ,
h \left( x,z,{\it d0},{\it d1},{\it d2},{\it d3},{\it d4},{\it d5}, \alpha \right) ={\frac {{\it d0}}{\lambda \left( x,z,\alpha \right) }}+ {\frac {{\it d1}\,{x}^{2}+{\it d2}\,z}{ \left( \lambda \left( x,z, \alpha \right) \right) ^{2}}}+{\frac {{\it d3}\,{x}^{4}+{\it d4}\,{x}^ {2}z+{\it d5}\,{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3}}} ,
\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,
{\it dCab}=[- 0.6746338,- 0.1534002,- 0.09021521,- 0.001292037,- 0.0002352983, 0.0] ,
{\it dCss}=[ 0.8976746,- 0.2345830, 0.2368173,- 0.0009913890,- 0.01146165, 0.0] ,
{\it aCab}= 0.003050 ,
{\it aCss}= 0.005151 ,
f= \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) -\epsilon \left( \rho \left( a \right) ,0 \right) -\epsilon \left( \rho \left( b \right) ,0 \right) \right) \left( {\it Gab} \left( \chi \left( a \right) ,\chi \left( b \right) \right) +h \left( x,z,{\it dCab}_{{0}},{\it dCab}_{{1}},{\it dCab}_{{2}},{\it dCab}_{{3}},{\it dCab}_{{4}},{\it dCab}_{{5}},{\it aCab} \right) \right) ,
g=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} ,
G=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} .
g=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,
G=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,
S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,
F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,
R= 0.804 ,
\mu=1/3\,\delta\,{\pi }^{2} ,
\delta= 0.066725 ,
n=11 ,
A=[ 0.1179732,- 1.066708,- 0.1462405, 7.481848, 3.776679,- 44.36118,- 18.30962, 100.3903, 38.64360,- 98.06018,- 25.57716, 35.90404] ,
{\it Fs} \left( {\it ws} \right) =\sum _{i=0}^{n}A_{{i}}{{\it ws}}^{i} ,
{\it ws}={\frac {{\it ts}-1}{{\it ts}+1}} ,
{\it ts}={\frac {{\it tslsda}}{{\it tausMFM}}} ,
{\it tslsda}=3/10\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} \left( \rho \left( s \right) \right) ^{5/3} ,
{\it eslsda}=-3/8\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\pi }^{-1}} \left( \rho \left( s \right) \right) ^{4/3} ,
d=[- 0.1179732,- 0.002500000,- 0.01180065, 0.0, 0.0, 0.0] ,
\alpha= 0.001867 ,
{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,
h \left( x,z \right) ={\frac {d_{{0}}}{\lambda \left( x,z,\alpha \right) }}+{\frac {d_{{1}}{x}^{2}+d_{{2}}z}{ \left( \lambda \left( x,z ,\alpha \right) \right) ^{2}}}+{\frac {d_{{3}}{x}^{4}+d_{{4}}{x}^{2}z+ d_{{5}}{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3} }} ,
\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,
{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,
{\it tausMFM}=1/2\,\tau \left( s \right) .
T=[ 0.031091, 0.015545, 0.016887] ,
U=[ 0.21370, 0.20548, 0.11125] ,
V=[ 7.5957, 14.1189, 10.357] ,
W=[ 3.5876, 6.1977, 3.6231] ,
X=[ 1.6382, 3.3662, 0.88026] ,
Y=[ 0.49294, 0.62517, 0.49671] ,
P=[1,1,1] ,
\epsilon \left( \alpha,\beta \right) = \left( \alpha+\beta \right) \left( e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}} ,W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3}},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P _{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^ {4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2 }},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y_{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y _{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{ 4} \right) ,
r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,
c= 1.709921 ,
{\it Gab} \left( {\it chia},{\it chib} \right) =\sum _{i=0}^{n}{\it cCab}_{{i}} \left( {\frac {{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib}}^{2} \right) }{1+{\it yCab}\, \left( {{\it chia}}^{2}+{{\it chib} }^{2} \right) }} \right) ^{i} ,
{\it Gss} \left( {\it chis} \right) =\sum _{i=0}^{n}{\it cCss}_{{i}} \left( {\frac {{\it yCss}\,{{\it chis}}^{2}}{1+{\it yCss}\,{{\it chis} }^{2}}} \right) ^{i} ,
n=4 ,
{\it cCab}=[ 0.6042374, 177.6783,- 251.3252, 76.35173,- 12.55699] ,
{\it cCss}=[ 0.5349466, 0.5396620,- 31.61217, 51.49592,- 29.19613] ,
{\it yCab}= 0.0031 ,
{\it yCss}= 0.06 ,
x=\sqrt { \left( \chi \left( a \right) \right) ^{2}+ \left( \chi \left( b \right) \right) ^{2}} ,
{\it tausMFM}=1/2\,\tau \left( s \right) ,
{\it tauaMFM}=1/2\,\tau \left( a \right) ,
{\it taubMFM}=1/2\,\tau \left( b \right) ,
{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,
z=2\,{\frac {{\it tauaMFM}}{ \left( \rho \left( a \right) \right) ^{5/ 3}}}+2\,{\frac {{\it taubMFM}}{ \left( \rho \left( b \right) \right) ^ {5/3}}}-2\,{\it cf} ,
{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,
{\it ds}=1-{\frac { \left( \chi \left( s \right) \right) ^{2}}{4\,{ \it zs}+4\,{\it cf}}} ,
h \left( x,z,{\it d0},{\it d1},{\it d2},{\it d3},{\it d4},{\it d5}, \alpha \right) ={\frac {{\it d0}}{\lambda \left( x,z,\alpha \right) }}+ {\frac {{\it d1}\,{x}^{2}+{\it d2}\,z}{ \left( \lambda \left( x,z, \alpha \right) \right) ^{2}}}+{\frac {{\it d3}\,{x}^{4}+{\it d4}\,{x}^ {2}z+{\it d5}\,{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3}}} ,
\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,
{\it dCab}=[ 0.3957626,- 0.5614546, 0.01403963, 0.0009831442,- 0.003577176, 0.0] ,
{\it dCss}=[ 0.4650534, 0.1617589, 0.1833657, 0.0004692100,- 0.004990573, 0.0] ,
{\it aCab}= 0.003050 ,
{\it aCss}= 0.005151 ,
f= \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) -\epsilon \left( \rho \left( a \right) ,0 \right) -\epsilon \left( \rho \left( b \right) ,0 \right) \right) \left( {\it Gab} \left( \chi \left( a \right) ,\chi \left( b \right) \right) +h \left( x,z,{\it dCab}_{{0}},{\it dCab}_{{1}},{\it dCab}_{{2}},{\it dCab}_{{3}},{\it dCab}_{{4}},{\it dCab}_{{5}},{\it aCab} \right) \right) ,
g=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} ,
G=\epsilon \left( \rho \left( s \right) ,0 \right) \left( {\it Gss} \left( \chi \left( s \right) \right) +h \left( \chi \left( s \right) ,{\it zs},{\it dCss}_{{0}},{\it dCss}_{{1}},{\it dCss}_{{2}},{\it dCss} _{{3}},{\it dCss}_{{4}},{\it dCss}_{{5}},{\it aCss} \right) \right) { \it ds} .
g=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,
G=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,
S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,
F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,
R= 0.804 ,
\mu=1/3\,\delta\,{\pi }^{2} ,
\delta= 0.066725 ,
n=11 ,
A=[ 0.3987756, 0.2548219, 0.3923994,- 2.103655,- 6.302147, 10.97615, 30.97273,- 23.18489,- 56.73480, 21.60364, 34.21814,- 9.049762] ,
{\it Fs} \left( {\it ws} \right) =\sum _{i=0}^{n}A_{{i}}{{\it ws}}^{i} ,
{\it ws}={\frac {{\it ts}-1}{{\it ts}+1}} ,
{\it ts}={\frac {{\it tslsda}}{{\it tausMFM}}} ,
{\it tslsda}=3/10\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} \left( \rho \left( s \right) \right) ^{5/3} ,
{\it eslsda}=-3/8\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\pi }^{-1}} \left( \rho \left( s \right) \right) ^{4/3} ,
d=[ 0.6012244, 0.004748822,- 0.008635108,- 0.000009308062, 0.00004482811, 0.0] ,
\alpha= 0.001867 ,
{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,
h \left( x,z \right) ={\frac {d_{{0}}}{\lambda \left( x,z,\alpha \right) }}+{\frac {d_{{1}}{x}^{2}+d_{{2}}z}{ \left( \lambda \left( x,z ,\alpha \right) \right) ^{2}}}+{\frac {d_{{3}}{x}^{4}+d_{{4}}{x}^{2}z+ d_{{5}}{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3} }} ,
\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,
{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,
{\it tausMFM}=1/2\,\tau \left( s \right) .
g=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,
G=-3/4\,{\frac {\sqrt [3]{6}\sqrt [3]{{\pi }^{2}} \left( \rho \left( s \right) \right) ^{4/3}F \left( S \right) {\it Fs} \left( {\it ws} \right) }{\pi }}+{\it eslsda}\,h \left( \chi \left( s \right) ,{\it zs } \right) ,
S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,
F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,
R= 0.804 ,
\mu=1/3\,\delta\,{\pi }^{2} ,
\delta= 0.066725 ,
n=11 ,
A=[ 0.5877943,- 0.1371776, 0.2682367,- 2.515898,- 2.978892, 8.710679, 16.88195,- 4.489724,- 32.99983,- 14.49050, 20.43747, 12.56504] ,
{\it Fs} \left( {\it ws} \right) =\sum _{i=0}^{n}A_{{i}}{{\it ws}}^{i} ,
{\it ws}={\frac {{\it ts}-1}{{\it ts}+1}} ,
{\it ts}={\frac {{\it tslsda}}{{\it tausMFM}}} ,
{\it tslsda}=3/10\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} \left( \rho \left( s \right) \right) ^{5/3} ,
{\it eslsda}=-3/8\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\pi }^{-1}} \left( \rho \left( s \right) \right) ^{4/3} ,
d=[ 0.1422057, 0.0007370319,- 0.01601373, 0.0, 0.0, 0.0] ,
\alpha= 0.001867 ,
{\it zs}=2\,{\frac {{\it tausMFM}}{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,
h \left( x,z \right) ={\frac {d_{{0}}}{\lambda \left( x,z,\alpha \right) }}+{\frac {d_{{1}}{x}^{2}+d_{{2}}z}{ \left( \lambda \left( x,z ,\alpha \right) \right) ^{2}}}+{\frac {d_{{3}}{x}^{4}+d_{{4}}{x}^{2}z+ d_{{5}}{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3} }} ,
\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,
{\it cf}=3/5\,{6}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,
{\it tausMFM}=1/2\,\tau \left( s \right) .
Meta-GGA correlation functional based on first principles, see M. Modrzejewski et al., J. Chem. Phys. 137, 204121 (2012).
g=-3\,{\frac {\pi \, \left( \rho \left( s \right) \right) ^{3}}{\tau \left( s \right) -1/4\,\upsilon \left( s \right) }} .
MK00 with gradient correction of the form of B88X but with different empirical parameter. g=-3\,{\frac {\pi \, \left( \rho \left( s \right) \right) ^{3}}{\tau \left( s \right) -1/4\,\upsilon \left( s \right) }}-{\frac {\beta\, \left( \rho \left( s \right) \right) ^{4/3} \left( \chi \left( s \right) \right) ^{2}}{1+6\,\beta\,\chi \left( s \right) {\it arcsinh} \left( \chi \left( s \right) \right) }} ,
\beta= 0.0016 ,
G=-3\,{\frac {\pi \, \left( \rho \left( s \right) \right) ^{3}}{\tau \left( s \right) -1/4\,\upsilon \left( s \right) }}-{\frac {\beta\, \left( \rho \left( s \right) \right) ^{4/3} \left( \chi \left( s \right) \right) ^{2}}{1+6\,\beta\,\chi \left( s \right) {\it arcsinh} \left( \chi \left( s \right) \right) }} .
Gradient correction to VWN. f=\rho\,e+{\frac {{e^{-\Phi}}C \left( r \right) \sigma}{d{\rho}^{4/3}}} ,
r=1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{\frac {1}{\pi \,\rho}}} ,
x=\sqrt {r} ,
\zeta={\frac {\rho \left( a \right) -\rho \left( b \right) }{\rho}} ,
k=[ 0.0310907, 0.01554535,-1/6\,{\pi }^{-2}] ,
l=[- 0.10498,- 0.325,- 0.0047584] ,
m=[ 3.72744, 7.06042, 1.13107] ,
n=[ 12.9352, 18.0578, 13.0045] ,
e=\Lambda+\omega\,y \left( 1+h{\zeta}^{4} \right) ,
y={\frac {9}{8}}\, \left( 1+\zeta \right) ^{4/3}+{\frac {9}{8}}\, \left( 1-\zeta \right) ^{4/3}-9/4 ,
h=4/9\,{\frac {\lambda-\Lambda}{ \left( \sqrt [3]{2}-1 \right) \omega}} -1 ,
\Lambda=q \left( k_{{1}},l_{{1}},m_{{1}},n_{{1}} \right) ,
\lambda=q \left( k_{{2}},l_{{2}},m_{{2}},n_{{2}} \right) ,
\omega=q \left( k_{{3}},l_{{3}},m_{{3}},n_{{3}} \right) ,
q \left( A,p,c,d \right) =A \left( \ln \left( {\frac {{x}^{2}}{X \left( x,c,d \right) }} \right) +2\,c\arctan \left( {\frac {Q \left( c ,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{- 1}-cp \left( \ln \left( {\frac { \left( x-p \right) ^{2}}{X \left( x,c ,d \right) }} \right) +2\, \left( c+2\,p \right) \arctan \left( {\frac {Q \left( c,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{-1} \right) \left( X \left( p,c,d \right) \right) ^{-1} \right) ,
Q \left( c,d \right) =\sqrt {4\,d-{c}^{2}} ,
X \left( i,c,d \right) ={i}^{2}+ci+d ,
\Phi= 0.007390075\,{\frac {z\sqrt {\sigma}}{C \left( r \right) {\rho}^{ 7/6}}} ,
d=\sqrt [3]{2}\sqrt { \left( 1/2+1/2\,\zeta \right) ^{5/3}+ \left( 1/2- 1/2\,\zeta \right) ^{5/3}} ,
C \left( r \right) = 0.001667+{\frac { 0.002568+\alpha\,r+\beta\,{r}^{2 }}{1+\xi\,r+\delta\,{r}^{2}+10000\,\beta\,{r}^{3}}} ,
z= 0.11 ,
\alpha= 0.023266 ,
\beta= 0.000007389 ,
\xi= 8.723 ,
\delta= 0.472 .
f=\rho\, \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) +H \left( d,\rho \left( a \right) ,\rho \left( b \right) \right) \right) ,
G=\rho\, \left( \epsilon \left( \rho \left( s \right) ,0 \right) +C \left( Q,\rho \left( s \right) ,0 \right) \right) ,
d=1/12\,{\frac {\sqrt {\sigma}{3}^{5/6}}{u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \sqrt [6]{{\pi }^{-1}}{\rho}^{ 7/6}}} ,
u \left( \alpha,\beta \right) =1/2\, \left( 1+\zeta \left( \alpha,\beta \right) \right) ^{2/3}+1/2\, \left( 1-\zeta \left( \alpha,\beta \right) \right) ^{2/3} ,
H \left( d,\alpha,\beta \right) =1/2\, \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{\lambda}^{2}\ln \left( 1+2\,{\frac {\iota\, \left( {d}^{2}+A \left( \alpha,\beta \right) {d}^{4} \right) }{\lambda\, \left( 1+A \left( \alpha,\beta \right) {d}^{2}+ \left( A \left( \alpha,\beta \right) \right) ^{2}{d} ^{4} \right) }} \right) {\iota}^{-1} ,
A \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-2\,{ \frac {\iota\,\epsilon \left( \alpha,\beta \right) }{ \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{ \lambda}^{2}}}}}-1 \right) ^{-1} ,
\iota= 0.0716 ,
\lambda=\nu\,\kappa ,
\nu=16\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}}{\pi }} ,
\kappa= 0.004235 ,
Z=- 0.001667 ,
\phi \left( r \right) =\theta \left( r \right) -Z ,
\theta \left( r \right) ={\frac {1}{1000}}\,{\frac { 2.568+\Xi\,r+\Phi \,{r}^{2}}{1+\Lambda\,r+\Upsilon\,{r}^{2}+10\,\Phi\,{r}^{3}}} ,
\Xi= 23.266 ,
\Phi= 0.007389 ,
\Lambda= 8.723 ,
\Upsilon= 0.472 ,
T=[ 0.031091, 0.015545, 0.016887] ,
U=[ 0.21370, 0.20548, 0.11125] ,
V=[ 7.5957, 14.1189, 10.357] ,
W=[ 3.5876, 6.1977, 3.6231] ,
X=[ 1.6382, 3.3662, 0.88026] ,
Y=[ 0.49294, 0.62517, 0.49671] ,
P=[1,1,1] ,
\epsilon \left( \alpha,\beta \right) =e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3 }},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P_{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^{4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2}},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y _{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}} ,U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{4} ,
r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,
c= 1.709921 ,
C \left( d,\alpha,\beta \right) =K \left( Q,\alpha,\beta \right) +M \left( Q,\alpha,\beta \right) ,
M \left( d,\alpha,\beta \right) = 0.5\,\nu\, \left( \phi \left( r \left( \alpha,\beta \right) \right) -\kappa-3/7\,Z \right) {d}^{2}{e^ {- 335.9789467\,{\frac {{3}^{2/3}{d}^{2}}{\sqrt [3]{{\pi }^{5}\rho}}}}} ,
K \left( d,\alpha,\beta \right) = 0.2500000000\,{\lambda}^{2}\ln \left( 1+2\,{\frac {\iota\, \left( {d}^{2}+N \left( \alpha,\beta \right) {d}^{4} \right) }{\lambda\, \left( 1+N \left( \alpha,\beta \right) {d}^{2}+ \left( N \left( \alpha,\beta \right) \right) ^{2}{d} ^{4} \right) }} \right) {\iota}^{-1} ,
N \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-4\,{ \frac {\iota\,\epsilon \left( \alpha,\beta \right) }{{\lambda}^{2}}}}}- 1 \right) ^{-1} ,
Q=1/12\,{\frac {\sqrt {\sigma \left( {\it ss} \right) }\sqrt [3]{2}{3}^ {5/6}}{\sqrt [6]{{\pi }^{-1}}{\rho}^{7/6}}} .
g=1/2\,E \left( 2\,\rho \left( s \right) \right) ,
G=1/2\,E \left( 2\,\rho \left( s \right) \right) ,
E \left( n \right) =-3/4\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}{n}^ {4/3}F \left( S \right) }{\pi }} ,
S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,
F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,
R= 0.804 ,
\mu=1/3\,\delta\,{\pi }^{2} ,
\delta= 0.066725 .
Changes the value of the constant R from the original PBEX functional g=1/2\,E \left( 2\,\rho \left( s \right) \right) ,
G=1/2\,E \left( 2\,\rho \left( s \right) \right) ,
E \left( n \right) =-3/4\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}{n}^ {4/3}F \left( S \right) }{\pi }} ,
S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,
F \left( S \right) =1+R-R \left( 1+{\frac {\mu\,{S}^{2}}{R}} \right) ^{ -1} ,
R= 1.245 ,
\mu=1/3\,\delta\,{\pi }^{2} ,
\delta= 0.066725 .
GGA Exchange Functional. g=1/2\,E \left( 2\,\rho \left( s \right) \right) ,
E \left( n \right) =-3/4\,\sqrt [3]{3}\sqrt [3]{{\pi }^{-1}}{n}^{4/3}F \left( S \right) ,
F \left( S \right) = \left( 1+ 1.296\,{S}^{2}+14\,{S}^{4}+ 0.2\,{S}^{6} \right) ^{1/15} ,
S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,
G=1/2\,E \left( 2\,\rho \left( s \right) \right) .
f=\rho\, \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) +H \left( d,\rho \left( a \right) ,\rho \left( b \right) \right) \right) ,
G=\rho\, \left( \epsilon \left( \rho \left( s \right) ,0 \right) +C \left( Q,\rho \left( s \right) ,0 \right) \right) ,
d=1/12\,{\frac {\sqrt {\sigma}{3}^{5/6}}{u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \sqrt [6]{{\pi }^{-1}}{\rho}^{ 7/6}}} ,
u \left( \alpha,\beta \right) =1/2\, \left( 1+\zeta \left( \alpha,\beta \right) \right) ^{2/3}+1/2\, \left( 1-\zeta \left( \alpha,\beta \right) \right) ^{2/3} ,
H \left( d,\alpha,\beta \right) =L \left( d,\alpha,\beta \right) +J \left( d,\alpha,\beta \right) ,
L \left( d,\alpha,\beta \right) =1/2\, \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{\lambda}^{2}\ln \left( 1+2\,{\frac {\iota\, \left( {d}^{2}+A \left( \alpha,\beta \right) {d}^{4} \right) }{\lambda\, \left( 1+A \left( \alpha,\beta \right) {d}^{2}+ \left( A \left( \alpha,\beta \right) \right) ^{2}{d} ^{4} \right) }} \right) {\iota}^{-1} ,
J \left( d,\alpha,\beta \right) =\nu\, \left( \phi \left( r \left( \alpha,\beta \right) \right) -\kappa-3/7\,Z \right) \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{d}^ {2}{e^{-{\frac {400}{3}}\,{\frac { \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{4}{3}^{2/3}{d}^{2}} {\sqrt [3]{{\pi }^{5}\rho}}}}} ,
A \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-2\,{ \frac {\iota\,\epsilon \left( \alpha,\beta \right) }{ \left( u \left( \rho \left( a \right) ,\rho \left( b \right) \right) \right) ^{3}{ \lambda}^{2}}}}}-1 \right) ^{-1} ,
\iota= 0.09 ,
\lambda=\nu\,\kappa ,
\nu=16\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}}{\pi }} ,
\kappa= 0.004235 ,
Z=- 0.001667 ,
\phi \left( r \right) =\theta \left( r \right) -Z ,
\theta \left( r \right) ={\frac {1}{1000}}\,{\frac { 2.568+\Xi\,r+\Phi \,{r}^{2}}{1+\Lambda\,r+\Upsilon\,{r}^{2}+10\,\Phi\,{r}^{3}}} ,
\Xi= 23.266 ,
\Phi= 0.007389 ,
\Lambda= 8.723 ,
\Upsilon= 0.472 ,
T=[ 0.031091, 0.015545, 0.016887] ,
U=[ 0.21370, 0.20548, 0.11125] ,
V=[ 7.5957, 14.1189, 10.357] ,
W=[ 3.5876, 6.1977, 3.6231] ,
X=[ 1.6382, 3.3662, 0.88026] ,
Y=[ 0.49294, 0.62517, 0.49671] ,
P=[1,1,1] ,
\epsilon \left( \alpha,\beta \right) =e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3 }},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P_{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^{4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2}},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y _{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}} ,U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{4} ,
r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,
c= 1.709921 ,
C \left( d,\alpha,\beta \right) =K \left( Q,\alpha,\beta \right) +M \left( Q,\alpha,\beta \right) ,
M \left( d,\alpha,\beta \right) = 0.5\,\nu\, \left( \phi \left( r \left( \alpha,\beta \right) \right) -\kappa-3/7\,Z \right) {d}^{2}{e^ {- 335.9789467\,{\frac {{3}^{2/3}{d}^{2}}{\sqrt [3]{{\pi }^{5}\rho}}}}} ,
K \left( d,\alpha,\beta \right) = 0.2500000000\,{\lambda}^{2}\ln \left( 1+2\,{\frac {\iota\, \left( {d}^{2}+N \left( \alpha,\beta \right) {d}^{4} \right) }{\lambda\, \left( 1+N \left( \alpha,\beta \right) {d}^{2}+ \left( N \left( \alpha,\beta \right) \right) ^{2}{d} ^{4} \right) }} \right) {\iota}^{-1} ,
N \left( \alpha,\beta \right) =2\,\iota{\lambda}^{-1} \left( {e^{-4\,{ \frac {\iota\,\epsilon \left( \alpha,\beta \right) }{{\lambda}^{2}}}}}- 1 \right) ^{-1} ,
Q=1/12\,{\frac {\sqrt {\sigma \left( {\it ss} \right) }\sqrt [3]{2}{3}^ {5/6}}{\sqrt [6]{{\pi }^{-1}}{\rho}^{7/6}}} .
g=1/2\,E \left( 2\,\rho \left( s \right) \right) ,
G=1/2\,E \left( 2\,\rho \left( s \right) \right) ,
E \left( n \right) =-3/4\,{\frac {\sqrt [3]{3}\sqrt [3]{{\pi }^{2}}{n}^ {4/3}F \left( S \right) }{\pi }} ,
S=1/12\,{\frac {\chi \left( s \right) {6}^{2/3}}{\sqrt [3]{{\pi }^{2}}} } ,
F \left( S \right) ={\frac {1+ 0.19645\,S{\it arcsinh} \left( 7.7956\, S \right) + \left( 0.2743- 0.1508\,{e^{-100\,{S}^{2}}} \right) {S}^{2} }{1+ 0.19645\,S{\it arcsinh} \left( 7.7956\,S \right) + 0.004\,{S}^{4} }} .
Electron-gas correlation energy. T=[ 0.031091, 0.015545, 0.016887] ,
U=[ 0.21370, 0.20548, 0.11125] ,
V=[ 7.5957, 14.1189, 10.357] ,
W=[ 3.5876, 6.1977, 3.6231] ,
X=[ 1.6382, 3.3662, 0.88026] ,
Y=[ 0.49294, 0.62517, 0.49671] ,
P=[1,1,1] ,
f=\rho\,\epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) ,
\epsilon \left( \alpha,\beta \right) =e \left( r \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( r \left( \alpha,\beta \right) ,T_{{3}},U_{{3 }},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P_{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^{4} \right) }{c}}+ \left( e \left( r \left( \alpha,\beta \right) ,T_{{2}},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y _{{2}},P_{{2}} \right) -e \left( r \left( \alpha,\beta \right) ,T_{{1}} ,U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{4} ,
r \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,
c= 1.709921 .
g=\rho \left( s \right) .
Automatically generated Thomas-Fermi Kinetic Energy. g={\it ctf}\, \left( \rho \left( s \right) \right) ^{5/3} ,
{\it ctf}=3/10\,{2}^{2/3}{3}^{2/3} \left( {\pi }^{2} \right) ^{2/3} .
Density and gradient dependent first row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}}, 2,3/2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3,1] ,
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0] ,
v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0,0] ,
w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0] ,
\omega=[- 0.728255, 0.331699,- 1.02946, 0.235703,- 0.0876221, 0.140854, 0.0336982,- 0.0353615, 0.00497930,- 0.0645900, 0.0461795,- 0.00757191, - 0.00242717, 0.0428140,- 0.0744891, 0.0386577,- 0.352519, 2.19805,- 3.72927, 1.94441, 0.128877] ,
n=21 ,
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,
S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,
Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,
G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .
Density and gradient dependent first row exchange-correlation functional. t=[{\frac {13}{12}},7/6,4/3,3/2,5/3,{\frac {17}{12}},3/2,5/3,{\frac {11 }{6}},5/3,{\frac {11}{6}},2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3] ,
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1] ,
v=[0,0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0] ,
w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0] ,
\omega=[ 0.678831,- 1.75821, 1.27676,- 1.60789, 0.365610,- 0.181327, 0.146973, 0.147141,- 0.0716917,- 0.0407167, 0.0214625,- 0.000768156, 0.0310377,- 0.0720326, 0.0446562,- 0.266802, 1.50822,- 1.94515, 0.679078] ,
n=19 ,
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,
S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,
Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,
G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .
Density and gradient dependent first and second row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,{\frac {17}{12}},3/2,5/3,{\frac {11}{6}},5/3,{\frac {11}{6}},2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3,{\frac {13}{12}}] ,
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0] ,
v=[0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0,0] ,
w=[0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0] ,
\omega=[- 0.142542,- 0.783603,- 0.188875, 0.0426830,- 0.304953, 0.430407,- 0.0997699, 0.00355789,- 0.0344374, 0.0192108,- 0.00230906, 0.0235189,- 0.0331157, 0.0121316, 0.441190,- 2.27167, 4.03051,- 2.28074, 0.0360204] ,
n=19 ,
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,
S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,
Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,
G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .
Density an gradient dependent first and second row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,{\frac {17}{12}},3/2,5/3,{\frac {11}{6}},5/3,{\frac {11}{6}},2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3,{\frac {13}{12}}] ,
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0] ,
v=[0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0,0] ,
w=[0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0] ,
\omega=[ 0.0677353,- 1.06763,- 0.0419018, 0.0226313,- 0.222478, 0.283432,- 0.0165089,- 0.0167204,- 0.0332362, 0.0162254,- 0.000984119, 0.0376713,- 0.0653419, 0.0222835, 0.375782,- 1.90675, 3.22494,- 1.68698,- 0.0235810] ,
n=19 ,
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,
S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,
Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,
G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .
Density and gradient dependent first row exchange-correlation functional for closed shell systems. Total energies are improved by adding DN, where N is the number of electrons and D=0.1863. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}}, 2] ,
v=[0,0,0,0,1,1,1,1,2,2,2,2] ,
\omega=[- 0.864448, 0.565130,- 1.27306, 0.309681,- 0.287658, 0.588767,- 0.252700, 0.0223563, 0.0140131,- 0.0826608, 0.0556080,- 0.00936227] ,
n=12 ,
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}X_{{i}} ,
G=\sum _{i=1}^{n}1/2\,{\frac {\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} .
Density and gradient dependent first row exchange-correlation functional. FCFO = FC + open shell fitting. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}}, 2,3/2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3] ,
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1] ,
v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0] ,
w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0] ,
\omega=[- 0.864448, 0.565130,- 1.27306, 0.309681,- 0.287658, 0.588767,- 0.252700, 0.0223563, 0.0140131,- 0.0826608, 0.0556080,- 0.00936227,- 0.00677146, 0.0515199,- 0.0874213, 0.0423827, 0.431940,- 0.691153,- 0.637866, 1.07565] ,
n=20 ,
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,
S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,
Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,
G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .
Density and gradient dependent first row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,{\frac {11}{6}},3/2,5/3,{\frac {11}{6}}, 2,3/2,5/3,{\frac {11}{6}},2,7/6,4/3,3/2,5/3] ,
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1] ,
v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0] ,
w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0] ,
\omega=[- 0.962998, 0.860233,- 1.54092, 0.381602,- 0.210208, 0.391496,- 0.107660,- 0.0105324, 0.00837384,- 0.0617859, 0.0383072,- 0.00526905,- 0.00381514, 0.0321541,- 0.0568280, 0.0288585, 0.368326,- 0.328799,- 1.22595, 1.36412] ,
n=20 ,
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,
S_{{i}}= \left( {\frac {\rho \left( a \right) -\rho \left( b \right) }{ \rho}} \right) ^{2\,u_{{i}}} ,
X_{{i}}=1/2\,{\frac { \left( \sqrt {\sigma \left( {\it aa} \right) } \right) ^{v_{{i}}}+ \left( \sqrt {\sigma \left( {\it bb} \right) } \right) ^{v_{{i}}}}{{\rho}^{4/3\,v_{{i}}}}} ,
Y_{{i}}= \left( {\frac {\sigma \left( {\it aa} \right) +\sigma \left( { \it bb} \right) -2\,\sqrt {\sigma \left( {\it aa} \right) }\sqrt { \sigma \left( {\it bb} \right) }}{{\rho}^{8/3}}} \right) ^{w_{{i}}} ,
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}}S_{{i}}X_{{i}}Y_{{i}} ,
G=\sum _{i=1}^{n}1/2\,\omega_{{i}} \left( \rho \left( s \right) \right) ^{t_{{i}}} \left( \sqrt {\sigma \left( {\it ss} \right) } \right) ^{v_{{i}}} \left( {\frac {\sigma \left( {\it ss} \right) }{ \left( \rho \left( s \right) \right) ^{8/3}}} \right) ^{w_{{i}}} \left( \left( \rho \left( s \right) \right) ^{4/3\,v_{{i}}} \right) ^{-1} .
Density dependent first row exchange-correlation functional for closed shell systems. t=[7/6,4/3,3/2,5/3] ,
\omega=[- 1.06141, 0.898203,- 1.34439, 0.302369] ,
n=4 ,
R_{{i}}= \left( \rho \left( a \right) \right) ^{t_{{i}}}+ \left( \rho \left( b \right) \right) ^{t_{{i}}} ,
f=\sum _{i=1}^{n}\omega_{{i}}R_{{i}} .
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
p=[- 0.98, 0.3271, 0.7035] ,
q=[- 0.003557,- 0.03229, 0.007695] ,
r=[ 0.00625,- 0.02942, 0.05153] ,
t=[- 0.00002354, 0.002134, 0.00003394] ,
u=[- 0.0001283,- 0.005452,- 0.001269] ,
v=[ 0.0003575, 0.01578, 0.001296] ,
\alpha=[ 0.001867, 0.005151, 0.00305] ,
g= \left( \rho \left( s \right) \right) ^{4/3}F \left( \chi \left( s \right) ,{\it zs},p_{{1}},q_{{1}},r_{{1}},t_{{1}},u_{{1}},v_{{1}}, \alpha_{{1}} \right) +{\it ds}\,\epsilon \left( \rho \left( s \right) ,0 \right) F \left( \chi \left( s \right) ,{\it zs},p_{{2}},q_{{2}},r_{{2 }},t_{{2}},u_{{2}},v_{{2}},\alpha_{{2}} \right) ,
G= \left( \rho \left( s \right) \right) ^{4/3}F \left( \chi \left( s \right) ,{\it zs},p_{{1}},q_{{1}},r_{{1}},t_{{1}},u_{{1}},v_{{1}}, \alpha_{{1}} \right) +{\it ds}\,\epsilon \left( \rho \left( s \right) ,0 \right) F \left( \chi \left( s \right) ,{\it zs},p_{{2}},q_{{2}},r_{{2 }},t_{{2}},u_{{2}},v_{{2}},\alpha_{{2}} \right) ,
f=F \left( x,z,p_{{3}},q_{{3}},r_{{3}},t_{{3}},u_{{3}},v_{{3}},\alpha_{ {3}} \right) \left( \epsilon \left( \rho \left( a \right) ,\rho \left( b \right) \right) -\epsilon \left( \rho \left( a \right) ,0 \right) -\epsilon \left( \rho \left( b \right) ,0 \right) \right) ,
x= \left( \chi \left( a \right) \right) ^{2}+ \left( \chi \left( b \right) \right) ^{2} ,
{\it zs}={\frac {\tau \left( s \right) }{ \left( \rho \left( s \right) \right) ^{5/3}}}-{\it cf} ,
z={\frac {\tau \left( a \right) }{ \left( \rho \left( a \right) \right) ^{5/3}}}+{\frac {\tau \left( b \right) }{ \left( \rho \left( b \right) \right) ^{5/3}}}-2\,{\it cf} ,
{\it ds}=1-{\frac { \left( \chi \left( s \right) \right) ^{2}}{4\,{ \it zs}+4\,{\it cf}}} ,
F \left( x,z,p,q,c,d,e,f,\alpha \right) ={\frac {p}{\lambda \left( x,z, \alpha \right) }}+{\frac {q{x}^{2}+cz}{ \left( \lambda \left( x,z, \alpha \right) \right) ^{2}}}+{\frac {d{x}^{4}+e{x}^{2}z+f{z}^{2}}{ \left( \lambda \left( x,z,\alpha \right) \right) ^{3}}} ,
\lambda \left( x,z,\alpha \right) =1+\alpha\, \left( {x}^{2}+z \right) ,
{\it cf}=3/5\,{3}^{2/3} \left( {\pi }^{2} \right) ^{2/3} ,
T=[ 0.031091, 0.015545, 0.016887] ,
U=[ 0.21370, 0.20548, 0.11125] ,
V=[ 7.5957, 14.1189, 10.357] ,
W=[ 3.5876, 6.1977, 3.6231] ,
X=[ 1.6382, 3.3662, 0.88026] ,
Y=[ 0.49294, 0.62517, 0.49671] ,
P=[1,1,1] ,
\epsilon \left( \alpha,\beta \right) = \left( \alpha+\beta \right) \left( e \left( l \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}} ,W_{{1}},X_{{1}},Y_{{1}},P_{{1}} \right) -{\frac {e \left( l \left( \alpha,\beta \right) ,T_{{3}},U_{{3}},V_{{3}},W_{{3}},X_{{3}},Y_{{3}},P _{{3}} \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( 1- \left( \zeta \left( \alpha,\beta \right) \right) ^ {4} \right) }{c}}+ \left( e \left( l \left( \alpha,\beta \right) ,T_{{2 }},U_{{2}},V_{{2}},W_{{2}},X_{{2}},Y_{{2}},P_{{2}} \right) -e \left( l \left( \alpha,\beta \right) ,T_{{1}},U_{{1}},V_{{1}},W_{{1}},X_{{1}},Y _{{1}},P_{{1}} \right) \right) \omega \left( \zeta \left( \alpha,\beta \right) \right) \left( \zeta \left( \alpha,\beta \right) \right) ^{ 4} \right) ,
l \left( \alpha,\beta \right) =1/4\,\sqrt [3]{3}{4}^{2/3}\sqrt [3]{{ \frac {1}{\pi \, \left( \alpha+\beta \right) }}} ,
\zeta \left( \alpha,\beta \right) ={\frac {\alpha-\beta}{\alpha+\beta}} ,
\omega \left( z \right) ={\frac { \left( 1+z \right) ^{4/3}+ \left( 1-z \right) ^{4/3}-2}{2\,\sqrt [3]{2}-2}} ,
e \left( r,t,u,v,w,x,y,p \right) =-2\,t \left( 1+ur \right) \ln \left( 1+1/2\,{\frac {1}{t \left( v\sqrt {r}+wr+x{r}^{3/2}+y{r}^{p+1} \right) }} \right) ,
c= 1.709921 .
Automatically generated von Weizsäcker kinetic energy. g={\frac {c\sigma \left( {\it ss} \right) }{\rho \left( s \right) }} ,
G={\frac {c\sigma \left( {\it ss} \right) }{\rho \left( s \right) }} ,
c=1/8 .
VWN 1980(III) functional x=1/4\,\sqrt [6]{3}{4}^{5/6}\sqrt [6]{{\frac {1}{\pi \,\rho}}} ,
\zeta={\frac {\rho \left( a \right) -\rho \left( b \right) }{\rho}} ,
f=\rho\,e ,
k=[ 0.0310907, 0.01554535,-1/6\,{\pi }^{-2}] ,
l=[- 0.409286,- 0.743294,- 0.228344] ,
m=[ 13.0720, 20.1231, 1.06835] ,
n=[ 42.7198, 101.578, 11.4813] ,
e=\Lambda+z \left( \lambda-\Lambda \right) ,
y={\frac {9}{8}}\, \left( 1+\zeta \right) ^{4/3}+{\frac {9}{8}}\, \left( 1-\zeta \right) ^{4/3}-9/4 ,
\Lambda=q \left( k_{{1}},l_{{1}},m_{{1}},n_{{1}} \right) ,
\lambda=q \left( k_{{2}},l_{{2}},m_{{2}},n_{{2}} \right) ,
q \left( A,p,c,d \right) =A \left( \ln \left( {\frac {{x}^{2}}{X \left( x,c,d \right) }} \right) +2\,c\arctan \left( {\frac {Q \left( c ,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{- 1}-cp \left( \ln \left( {\frac { \left( x-p \right) ^{2}}{X \left( x,c ,d \right) }} \right) +2\, \left( c+2\,p \right) \arctan \left( {\frac {Q \left( c,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{-1} \right) \left( X \left( p,c,d \right) \right) ^{-1} \right) ,
Q \left( c,d \right) =\sqrt {4\,d-{c}^{2}} ,
X \left( i,c,d \right) ={i}^{2}+ci+d ,
z=4\,{\frac {y}{9\,\sqrt [3]{2}-9}} .
VWN 1980(V) functional. The fitting parameters for \Delta\varepsilon_{c}(r_{s},\zeta)_{V} appear in the caption of table 7 in the reference. x=1/4\,\sqrt [6]{3}{4}^{5/6}\sqrt [6]{{\frac {1}{\pi \,\rho}}} ,
\zeta={\frac {\rho \left( a \right) -\rho \left( b \right) }{\rho}} ,
f=\rho\,e ,
k=[ 0.0310907, 0.01554535,-1/6\,{\pi }^{-2}] ,
l=[- 0.10498,- 0.325,- 0.0047584] ,
m=[ 3.72744, 7.06042, 1.13107] ,
n=[ 12.9352, 18.0578, 13.0045] ,
e=\Lambda+\alpha\,y \left( 1+h{\zeta}^{4} \right) ,
y={\frac {9}{8}}\, \left( 1+\zeta \right) ^{4/3}+{\frac {9}{8}}\, \left( 1-\zeta \right) ^{4/3}-9/4 ,
h=4/9\,{\frac {\lambda-\Lambda}{ \left( \sqrt [3]{2}-1 \right) \alpha}} -1 ,
\Lambda=q \left( k_{{1}},l_{{1}},m_{{1}},n_{{1}} \right) ,
\lambda=q \left( k_{{2}},l_{{2}},m_{{2}},n_{{2}} \right) ,
\alpha=q \left( k_{{3}},l_{{3}},m_{{3}},n_{{3}} \right) ,
q \left( A,p,c,d \right) =A \left( \ln \left( {\frac {{x}^{2}}{X \left( x,c,d \right) }} \right) +2\,c\arctan \left( {\frac {Q \left( c ,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{- 1}-cp \left( \ln \left( {\frac { \left( x-p \right) ^{2}}{X \left( x,c ,d \right) }} \right) +2\, \left( c+2\,p \right) \arctan \left( {\frac {Q \left( c,d \right) }{2\,x+c}} \right) \left( Q \left( c,d \right) \right) ^{-1} \right) \left( X \left( p,c,d \right) \right) ^{-1} \right) ,
Q \left( c,d \right) =\sqrt {4\,d-{c}^{2}} ,
X \left( i,c,d \right) ={i}^{2}+ci+d .
Here it means M05 exchange-correlation part which excludes HF exact exchange term. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005).
Here it means M05-2X exchange-correlation part which excludes HF exact exchange term. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).
Here it means M06 exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
Here it means M06-2X exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
Here it means M06-HF exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006).
Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
Here it means M08-HX exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).
Here it means M08-SO exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).
R. Peverati and D. G. Truhlar, Journal of Physical Chemistry Letters 3, 117 (2012).
Y. Zhao and D. G. Truhlar, J. Chem. Phys. 128, 184109 (2008).
R. Peverati, Y. Zhao and D. G. Truhlar, J. Phys. Chem. Lett. 2 (16), 1991 (2011).
Here it means SOGGA11-X exchange-correlation part which excludes HF exact exchange term. R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011).