Density functional descriptions
B86: Xalpha beta gamma
Divergence free semiempirical gradient-corrected exchange energy functional. λ=γ in ref. g=−c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,
G=−c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,
c=3/83√342/33√π−1,
β=0.0076,
λ=0.004.
B86MGC: Xalpha beta gamma with Modified Gradient Correction
B86 with modified gradient correction for large density gradients. g=−c(ρ(s))4/3−β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5,
G=−c(ρ(s))4/3−β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5,
c=3/83√342/33√π−1,
β=0.00375,
λ=0.007.
B86R: Xalpha beta gamma Re-optimised
Re-optimised β of B86 used in part 3 of Becke’s 1997 paper. g=−c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,
G=−c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,
c=3/83√342/33√π−1,
β=0.00787,
λ=0.004.
B88: Becke 1988 Exchange Functional
G=−(ρ(s))4/3(c+β(χ(s))21+6βχ(s)arcsinh(χ(s))),
g=−(ρ(s))4/3(c+β(χ(s))21+6βχ(s)arcsinh(χ(s))),
c=3/83√342/33√π−1,
β=0.0042.
B88C: Becke 1988 Correlation Functional
Correlation functional depending on B86MGC exchange functional with empirical atomic parameters, t and u. The exchange functional that is used in conjunction with B88C should replace B88MGC here. f=−0.8ρ(a)ρ(b)q2(1−ln(1+q)q),
q=t(x+y),
x=0.5(c3√ρ(a)+β(χ(a))23√ρ(a)(1+λ(χ(a))2)4/5)−1,
y=0.5(c3√ρ(b)+β(χ(b))23√ρ(b)(1+λ(χ(b))2)4/5)−1,
t=0.63,
g=−0.01ρ(s)dz4(1−2ln(1+1/2z)z),
z=2ur,
r=0.5ρ(s)(c(ρ(s))4/3+β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5)−1,
u=0.96,
d=τ(s)−1/4σ(ss)ρ(s),
G=−0.01ρ(s)dz4(1−2ln(1+1/2z)z),
c=3/83√342/33√π−1,
β=0.00375,
λ=0.007.
B95: Becke 1995 Correlation Functional
tau dependent Dynamical correlation functional. T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
f=E1+l((χ(a))2+(χ(b))2),
g=Fϵ(ρ(s),0)H(1+ν(χ(s))2)2,
G=Fϵ(ρ(s),0)H(1+ν(χ(s))2)2,
E=ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0),
l=0.0031,
F=τ(s)−1/4σ(ss)ρ(s),
H=3/562/3(π2)2/3(ρ(s))5/3,
ν=0.038,
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
B97DF: Density functional part of B97
This functional needs to be mixed with 0.1943*exact exchange. T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.9454,0.7471,−4.5961],
B=[0.1737,2.3487,−2.4868],
C=[0.8094,0.5073,0.7481],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),
G=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
B97RDF: Density functional part of B97 Re-parameterized by Hamprecht et al
Re-parameterization of the B97 functional in a self-consistent procedure by Hamprecht et al. This functional needs to be mixed with 0.21*exact exchange. T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.955689,0.788552,−5.47869],
B=[0.0820011,2.71681,−2.87103],
C=[0.789518,0.573805,0.660975],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),
G=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
BR: Becke-Roussel Exchange Functional
A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)
K=12∑sρsUs, where Us=−(1−e−x−xe−x/2)/b, b=x3e−x8πρs and x is defined by the nonlinear equation xe−2x/3x−2=2π2/3ρ5/3s3Qs, where Qs=(υs−2γDs)/6, Ds=τs−σss4ρs and γ=1.
BRUEG: Becke-Roussel Exchange Functional — Uniform Electron Gas Limit
A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)
As for BR
but with γ=0.8.
BW: Becke-Wigner Exchange-Correlation Functional
Hybrid exchange-correlation functional comprimising Becke’s 1998 exchange and Wigner’s spin-polarised correlation functionals. α=−3/83√342/33√π−1,
g=α(ρ(s))4/3−β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),
G=α(ρ(s))4/3−β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),
f=−4cρ(a)ρ(b)ρ−1(1+d3√ρ)−1,
β=0.0042,
c=0.04918,
d=0.349.
CS1: Colle-Salvetti correlation functional
R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1974); C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988)
CS1
is formally identical to CS2
, except for a reformulation in which the terms involving υ are eliminated by integration by parts. This makes the functional more economical to evaluate. In the limit of exact quadrature, CS1
and CS2
are identical, but small numerical differences appear with finite integration grids.
CS2: Colle-Salvetti correlation functional
R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1974); C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988)
CS2
is defined through K=−a(ρ+2bρ−5/3[ραtα+ρβtβ−ρtW]e−cρ−1/31+dρ−1/3) where tα=τα2−υα8tβ=τβ2−υβ8tW=18σρ−12υ and the constants are a=0.04918,b=0.132,c=0.2533,d=0.349.
DIRAC: Slater-Dirac Exchange Energy
Automatically generated Slater-Dirac exchange. g=−c(ρ(s))4/3,
c=3/83√342/33√π−1.
ECERF: Short-range LDA correlation functional
Local-density approximation of correlation energy
for short-range interelectronic interaction erf(μr21)/r12,
S. Paziani, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. B 73, 155111 (2006).
ϵSRc(rs,ζ,μ)=ϵPW92c(rs,ζ)−[ϕ2(ζ)]3Q(μ√rsϕ2(ζ))+a1μ3+a2μ4+a3μ5+a4μ6+a5μ8(1+b20μ2)4, where Q(x)=2ln(2)−2π2ln(1+ax+bx2+cx31+ax+dx2), with a=5.84605, c=3.91744, d=3.44851, and b=d−3πα/(4ln(2)−4). The parameters ai(rs,ζ) are given by a1=4b60C3+b80C5,a2=4b60C2+b80C4+6b40ϵPW92c,a3=b80C3,a4=b80C2+4b60ϵPW92c,a5=b80ϵPW92c, with C2=−3(1−ζ2)gc(0,rs,ζ=0)8r3sC3=−(1−ζ2)g(0,rs,ζ=0)√2πr3sC4=−9c4(rs,ζ)64r3sC5=−9c5(rs,ζ)40√2πr3sc4(rs,ζ)=(1+ζ2)2g″(0,rs(21+ζ)1/3,ζ=1)+(1−ζ2)2×g″(0,rs(21−ζ)1/3,ζ=1)+(1−ζ2)D2(rs)−ϕ8(ζ)5α2r2sc5(rs,ζ)=(1+ζ2)2g″(0,rs(21+ζ)1/3,ζ=1)+(1−ζ2)2×g″(0,rs(21−ζ)1/3,ζ=1)+(1−ζ2)D3(rs), and [b0(rs)=0.784949rs[g″(0,rs,ζ=1)=25/35α2r2s1−0.02267rs(1+0.4319rs+0.04r2s)[D2(rs)=e−0.547rsr2s(−0.388rs+0.676r2s)[D3(rs)=e−0.31rsr3s(−4.95rs+r2s). Finally, ϵPW92c(rs,ζ) is the Perdew-Wang parametrization of the correlation energy of the standard uniform electron gas [J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)], and g(0,rs,ζ=0)=12(1−Brs+Cr2s+Dr3s+Er4s)e−drs, is the on-top pair-distribution function of the standard jellium model [P. Gori-Giorgi and J.P. Perdew, Phys. Rev. B 64, 155102 (2001)], where B=−0.0207, C=0.08193, D=−0.01277, E=0.001859, d=0.7524. The correlation part of the on-top pair-distribution function is gc(0,rs,ζ=0)=g(0,rs,ζ=0)−12.
ECERFPBE: Range-Separated Correlation Functional
Toulouse-Colonna-Savin range-separated correlation functional based on PBE, see J. Toulouse et al., J. Chem. Phys. 122, 014110 (2005).
EXACT: Exact Exchange Functional
Hartree-Fock exact exchange functional can be used to construct hybrid exchange-correlation functional.
EXERF: Short-range LDA correlation functional
Local-density approximation of exchange energy
for short-range interelectronic interaction erf(μr12)/r12,
A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J.M. Seminario (Elsevier, Amsterdam, 1996).
ϵSRx(rs,ζ,μ)=34πϕ4(ζ)αrs−12(1+ζ)4/3fx(rs,μ(1+ζ)−1/3)+12(1−ζ)4/3fx(rs,μ(1−ζ)−1/3) with ϕn(ζ)=12[(1+ζ)n/3+(1−ζ)n/3], fx(rs,μ)=−μπ[(2y−4y3)e−1/4y2−3y+4y3+√πerf(12y)],y=μαrs2, and α=(4/9π)1/3.
EXERFPBE: Range-Separated Exchange Functional
Toulouse-Colonna-Savin range-separated exchange functional based on PBE, see J. Toulouse et al., J. Chem. Phys. 122, 014110 (2005).
G96: Gill’s 1996 Gradient Corrected Exchange Functional
α=−3/83√342/33√π−1,
g=(ρ(s))4/3(α−1137(χ(s))3/2),
G=(ρ(s))4/3(α−1137(χ(s))3/2).
HCTH120: Handy least squares fitted functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.51473,6.9298,−24.707,23.110,−11.323],
B=[0.48951,−0.2607,0.4329,−1.9925,2.4853],
C=[1.09163,−0.7472,5.0783,−4.1075,1.1717],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
HCTH147: Handy least squares fitted functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.542352,7.01464,−28.3822,35.0329,−20.4284],
B=[0.562576,−0.0171436,−1.30636,1.05747,0.885429],
C=[1.09025,−0.799194,5.57212,−5.86760,3.04544],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)+e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
HCTH93: Handy least squares fitted functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
A=[0.72997,3.35287,−11.543,8.08564,−4.47857],
B=[0.222601,−0.0338622,−0.012517,−0.802496,1.55396],
C=[1.0932,−0.744056,5.5992,−6.78549,4.49357],
λ=[0.006,0.2,0.004],
d=1/2(χ(a))2+1/2(χ(b))2,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),
η(θ,μ)=μθ1+μθ,
g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)−3/83√342/33√π−1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
HJSWPBEX: Meta GGA Correlation Functional
Henderson-Janesko-Scuseria range-separated exchange functional based on a model of an exchange hole derived by a constraint-satisfaction technique, see T. M. Henderson et al., J. Chem. Phys. 128, 194105 (2008).
LTA: Local tau Approximation
LSDA exchange functional with density represented as a function of τ. g=1/2E(2τ(s)),
E(α)=1/9c54/55√9(α3√3(π2)2/3)4/5,
c=−3/43√33√π−1,
G=1/2E(2τ(s)).
LYP: Lee, Yang and Parr Correlation Functional
C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988); B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 157, 200 (1989). f=−4Aρ(a)ρ(b)(1+d3√ρ)−1ρ−1−ABω(ρ(a)ρ(b)(822/3cf((ρ(a))8/3+(ρ(b))8/3)+(4718−718δ)σ−(5/2−1/18δ)(σ(aa)+σ(bb))−1/9(δ−11)(ρ(a)σ(aa)ρ+ρ(b)σ(bb)ρ))−2/3ρ2σ+(2/3ρ2−(ρ(a))2)σ(bb)+(2/3ρ2−(ρ(b))2)σ(aa)),
ω=e−c3√ρρ−11/3(1+d3√ρ)−1,
δ=c3√ρ+d13√ρ(1+d3√ρ)−1,
cf=3/1032/3(π2)2/3,
A=0.04918,
B=0.132,
c=0.2533,
d=0.349.
M052XC: M05-2X Meta-GGA Correlation Functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
tausMFM=1/2τ(s),
ds=2tausMFM−1/4σ(ss)ρ(s),
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[1.0,1.09297,−3.79171,2.82810,−10.58909],
cCss=[1.0,−3.05430,7.61854,1.47665,−11.92365],
yCab=0.0031,
yCss=0.06,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))Gab(χ(a),χ(b)),
g=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM,
G=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM.
M052XX: M05-2X Meta-GGA Exchange Functional
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[1.0,−0.56833,−1.30057,5.50070,9.06402,−32.21075,−23.73298,70.22996,29.88614,−60.25778,−13.22205,15.23694],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
tausMFM=1/2τ(s).
M05C: M05 Meta-GGA Correlation Functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
tausMFM=1/2τ(s),
ds=2tausMFM−1/4σ(ss)ρ(s),
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[1.0,3.78569,−14.15261,−7.46589,17.94491],
cCss=[1.0,3.77344,−26.04463,30.69913,−9.22695],
yCab=0.0031,
yCss=0.06,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))Gab(χ(a),χ(b)),
g=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM,
G=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM.
M05X: M05 Meta-GGA Exchange Functional
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[1.0,0.08151,−0.43956,−3.22422,2.01819,8.79431,−0.00295,9.82029,−4.82351,−48.17574,3.64802,34.02248],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
tausMFM=1/2τ(s).
M062XC: M06-2X Meta-GGA Correlation Functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[0.8833596,33.57972,−70.43548,49.78271,−18.52891],
cCss=[0.3097855,−5.528642,13.47420,−32.13623,28.46742],
yCab=0.0031,
yCss=0.06,
x=√(χ(a))2+(χ(b))2,
tausMFM=1/2τ(s),
tauaMFM=1/2τ(a),
taubMFM=1/2τ(b),
zs=2tausMFM(ρ(s))5/3−cf,
z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/3−2cf,
cf=3/562/3(π2)2/3,
ds=1−(χ(s))24zs+4cf,
h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
dCab=[0.1166404,−0.09120847,−0.06726189,0.00006720580,0.0008448011,0.0],
dCss=[0.6902145,0.09847204,0.2214797,−0.001968264,−0.006775479,0.0],
aCab=0.003050,
aCss=0.005151,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),
g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,
G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.
M062XX: M06-2X Meta-GGA Exchange Functional
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π,
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[0.4600000,−0.2206052,−0.09431788,2.164494,−2.556466,−14.22133,15.55044,35.98078,−27.22754,−39.24093,15.22808,15.22227],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
tausMFM=1/2τ(s).
M06C: M06 Meta-GGA Correlation Functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[3.741593,218.7098,−453.1252,293.6479,−62.87470],
cCss=[0.5094055,−1.491085,17.23922,−38.59018,28.45044],
yCab=0.0031,
yCss=0.06,
x=√(χ(a))2+(χ(b))2,
tausMFM=1/2τ(s),
tauaMFM=1/2τ(a),
taubMFM=1/2τ(b),
zs=2tausMFM(ρ(s))5/3−cf,
z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/3−2cf,
cf=3/562/3(π2)2/3,
ds=1−(χ(s))24zs+4cf,
h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
dCab=[−2.741539,−0.6720113,−0.07932688,0.001918681,−0.002032902,0.0],
dCss=[0.4905945,−0.1437348,0.2357824,0.001871015,−0.003788963,0.0],
aCab=0.003050,
aCss=0.005151,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),
g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,
G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.
M06HFC: M06-HF Meta-GGA Correlation Functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[1.674634,57.32017,59.55416,−231.1007,125.5199],
cCss=[0.1023254,−2.453783,29.13180,−34.94358,23.15955],
yCab=0.0031,
yCss=0.06,
x=√(χ(a))2+(χ(b))2,
tausMFM=1/2τ(s),
tauaMFM=1/2τ(a),
taubMFM=1/2τ(b),
zs=2tausMFM(ρ(s))5/3−cf,
z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/3−2cf,
cf=3/562/3(π2)2/3,
ds=1−(χ(s))24zs+4cf,
h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
dCab=[−0.6746338,−0.1534002,−0.09021521,−0.001292037,−0.0002352983,0.0],
dCss=[0.8976746,−0.2345830,0.2368173,−0.0009913890,−0.01146165,0.0],
aCab=0.003050,
aCss=0.005151,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),
g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,
G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.
M06HFX: M06-HF Meta-GGA Exchange Functional
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[0.1179732,−1.066708,−0.1462405,7.481848,3.776679,−44.36118,−18.30962,100.3903,38.64360,−98.06018,−25.57716,35.90404],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
eslsda=−3/83√342/33√π−1(ρ(s))4/3,
d=[−0.1179732,−0.002500000,−0.01180065,0.0,0.0,0.0],
α=0.001867,
zs=2tausMFM(ρ(s))5/3−cf,
h(x,z)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
cf=3/562/3(π2)2/3,
tausMFM=1/2τ(s).
M06LC: M06-L Meta-GGA Correlation Functional
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
Gab(chia,chib)=n∑i=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,
Gss(chis)=n∑i=0cCssi(yCsschis21+yCsschis2)i,
n=4,
cCab=[0.6042374,177.6783,−251.3252,76.35173,−12.55699],
cCss=[0.5349466,0.5396620,−31.61217,51.49592,−29.19613],
yCab=0.0031,
yCss=0.06,
x=√(χ(a))2+(χ(b))2,
tausMFM=1/2τ(s),
tauaMFM=1/2τ(a),
taubMFM=1/2τ(b),
zs=2tausMFM(ρ(s))5/3−cf,
z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/3−2cf,
cf=3/562/3(π2)2/3,
ds=1−(χ(s))24zs+4cf,
h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
dCab=[0.3957626,−0.5614546,0.01403963,0.0009831442,−0.003577176,0.0],
dCss=[0.4650534,0.1617589,0.1833657,0.0004692100,−0.004990573,0.0],
aCab=0.003050,
aCss=0.005151,
f=(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),
g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,
G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.
M06LX: M06-L Meta-GGA Exchange Functional
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[0.3987756,0.2548219,0.3923994,−2.103655,−6.302147,10.97615,30.97273,−23.18489,−56.73480,21.60364,34.21814,−9.049762],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
eslsda=−3/83√342/33√π−1(ρ(s))4/3,
d=[0.6012244,0.004748822,−0.008635108,−0.000009308062,0.00004482811,0.0],
α=0.001867,
zs=2tausMFM(ρ(s))5/3−cf,
h(x,z)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
cf=3/562/3(π2)2/3,
tausMFM=1/2τ(s).
M06X: M06 Meta-GGA Exchange Functional
g=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),
G=−3/43√63√π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725,
n=11,
A=[0.5877943,−0.1371776,0.2682367,−2.515898,−2.978892,8.710679,16.88195,−4.489724,−32.99983,−14.49050,20.43747,12.56504],
Fs(ws)=n∑i=0Aiwsi,
ws=ts−1ts+1,
ts=tslsdatausMFM,
tslsda=3/1062/3(π2)2/3(ρ(s))5/3,
eslsda=−3/83√342/33√π−1(ρ(s))4/3,
d=[0.1422057,0.0007370319,−0.01601373,0.0,0.0,0.0],
α=0.001867,
zs=2tausMFM(ρ(s))5/3−cf,
h(x,z)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
cf=3/562/3(π2)2/3,
tausMFM=1/2τ(s).
M12C: Meta GGA Correlation Functional
Meta-GGA correlation functional based on first principles, see M. Modrzejewski et al., J. Chem. Phys. 137, 204121 (2012).
MK00: Exchange Functional for Accurate Virtual Orbital Energies
g=−3π(ρ(s))3τ(s)−1/4υ(s).
MK00B: Exchange Functional for Accurate Virtual Orbital Energies
MK00 with gradient correction of the form of B88X but with different empirical parameter. g=−3π(ρ(s))3τ(s)−1/4υ(s)−β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),
β=0.0016,
G=−3π(ρ(s))3τ(s)−1/4υ(s)−β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)).
P86: .
Gradient correction to VWN. f=ρe+e−ΦC(r)σdρ4/3,
r=1/43√342/33√1πρ,
x=√r,
ζ=ρ(a)−ρ(b)ρ,
k=[0.0310907,0.01554535,−1/6π−2],
l=[−0.10498,−0.325,−0.0047584],
m=[3.72744,7.06042,1.13107],
n=[12.9352,18.0578,13.0045],
e=Λ+ωy(1+hζ4),
y=98(1+ζ)4/3+98(1−ζ)4/3−9/4,
h=4/9λ−Λ(3√2−1)ω−1,
Λ=q(k1,l1,m1,n1),
λ=q(k2,l2,m2,n2),
ω=q(k3,l3,m3,n3),
q(A,p,c,d)=A(ln(x2X(x,c,d))+2carctan(Q(c,d)2x+c)(Q(c,d))−1−cp(ln((x−p)2X(x,c,d))+2(c+2p)arctan(Q(c,d)2x+c)(Q(c,d))−1)(X(p,c,d))−1),
Q(c,d)=√4d−c2,
X(i,c,d)=i2+ci+d,
Φ=0.007390075z√σC(r)ρ7/6,
d=3√2√(1/2+1/2ζ)5/3+(1/2−1/2ζ)5/3,
C(r)=0.001667+0.002568+αr+βr21+ξr+δr2+10000βr3,
z=0.11,
α=0.023266,
β=0.000007389,
ξ=8.723,
δ=0.472.
PBEC: PBE Correlation Functional
f=ρ(ϵ(ρ(a),ρ(b))+H(d,ρ(a),ρ(b))),
G=ρ(ϵ(ρ(s),0)+C(Q,ρ(s),0)),
d=1/12√σ35/6u(ρ(a),ρ(b))6√π−1ρ7/6,
u(α,β)=1/2(1+ζ(α,β))2/3+1/2(1−ζ(α,β))2/3,
H(d,α,β)=1/2(u(ρ(a),ρ(b)))3λ2ln(1+2ι(d2+A(α,β)d4)λ(1+A(α,β)d2+(A(α,β))2d4))ι−1,
A(α,β)=2ιλ−1(e−2ιϵ(α,β)(u(ρ(a),ρ(b)))3λ2−1)−1,
ι=0.0716,
λ=νκ,
ν=163√33√π2π,
κ=0.004235,
Z=−0.001667,
ϕ(r)=θ(r)−Z,
θ(r)=110002.568+Ξr+Φr21+Λr+Υr2+10Φr3,
Ξ=23.266,
Φ=0.007389,
Λ=8.723,
Υ=0.472,
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4,
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
C(d,α,β)=K(Q,α,β)+M(Q,α,β),
M(d,α,β)=0.5ν(ϕ(r(α,β))−κ−3/7Z)d2e−335.978946732/3d23√π5ρ,
K(d,α,β)=0.2500000000λ2ln(1+2ι(d2+N(α,β)d4)λ(1+N(α,β)d2+(N(α,β))2d4))ι−1,
N(α,β)=2ιλ−1(e−4ιϵ(α,β)λ2−1)−1,
Q=1/12√σ(ss)3√235/66√π−1ρ7/6.
PBESOLC: PBEsol Correlation Functional
PBESOLX: PBEsol Exchange Functional
PBEX: PBE Exchange Functional
g=1/2E(2ρ(s)),
G=1/2E(2ρ(s)),
E(n)=−3/43√33√π2n4/3F(S)π,
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=0.804,
μ=1/3δπ2,
δ=0.066725.
PBEXREV: Revised PBE Exchange Functional
Changes the value of the constant R from the original PBEX functional g=1/2E(2ρ(s)),
G=1/2E(2ρ(s)),
E(n)=−3/43√33√π2n4/3F(S)π,
S=1/12χ(s)62/33√π2,
F(S)=1+R−R(1+μS2R)−1,
R=1.245,
μ=1/3δπ2,
δ=0.066725.
PW86: .
GGA Exchange Functional. g=1/2E(2ρ(s)),
E(n)=−3/43√33√π−1n4/3F(S),
F(S)=(1+1.296S2+14S4+0.2S6)1/15,
S=1/12χ(s)62/33√π2,
G=1/2E(2ρ(s)).
PW91C: Perdew-Wang 1991 GGA Correlation Functional
f=ρ(ϵ(ρ(a),ρ(b))+H(d,ρ(a),ρ(b))),
G=ρ(ϵ(ρ(s),0)+C(Q,ρ(s),0)),
d=1/12√σ35/6u(ρ(a),ρ(b))6√π−1ρ7/6,
u(α,β)=1/2(1+ζ(α,β))2/3+1/2(1−ζ(α,β))2/3,
H(d,α,β)=L(d,α,β)+J(d,α,β),
L(d,α,β)=1/2(u(ρ(a),ρ(b)))3λ2ln(1+2ι(d2+A(α,β)d4)λ(1+A(α,β)d2+(A(α,β))2d4))ι−1,
J(d,α,β)=ν(ϕ(r(α,β))−κ−3/7Z)(u(ρ(a),ρ(b)))3d2e−4003(u(ρ(a),ρ(b)))432/3d23√π5ρ,
A(α,β)=2ιλ−1(e−2ιϵ(α,β)(u(ρ(a),ρ(b)))3λ2−1)−1,
ι=0.09,
λ=νκ,
ν=163√33√π2π,
κ=0.004235,
Z=−0.001667,
ϕ(r)=θ(r)−Z,
θ(r)=110002.568+Ξr+Φr21+Λr+Υr2+10Φr3,
Ξ=23.266,
Φ=0.007389,
Λ=8.723,
Υ=0.472,
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4,
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921,
C(d,α,β)=K(Q,α,β)+M(Q,α,β),
M(d,α,β)=0.5ν(ϕ(r(α,β))−κ−3/7Z)d2e−335.978946732/3d23√π5ρ,
K(d,α,β)=0.2500000000λ2ln(1+2ι(d2+N(α,β)d4)λ(1+N(α,β)d2+(N(α,β))2d4))ι−1,
N(α,β)=2ιλ−1(e−4ιϵ(α,β)λ2−1)−1,
Q=1/12√σ(ss)3√235/66√π−1ρ7/6.
PW91X: Perdew-Wang 1991 GGA Exchange Functional
g=1/2E(2ρ(s)),
G=1/2E(2ρ(s)),
E(n)=−3/43√33√π2n4/3F(S)π,
S=1/12χ(s)62/33√π2,
F(S)=1+0.19645Sarcsinh(7.7956S)+(0.2743−0.1508e−100S2)S21+0.19645Sarcsinh(7.7956S)+0.004S4.
PW92C: Perdew-Wang 1992 GGA Correlation Functional
Electron-gas correlation energy. T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
f=ρϵ(ρ(a),ρ(b)),
ϵ(α,β)=e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4,
r(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
STEST: Test for number of electrons
g=ρ(s).
TFKE: Thomas-Fermi Kinetic Energy
Automatically generated Thomas-Fermi Kinetic Energy. g=ctf(ρ(s))5/3,
ctf=3/1022/332/3(π2)2/3.
TH1: Tozer and Handy 1998
Density and gradient dependent first row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,116,3/2,5/3,116,2,3/2,5/3,116,2,7/6,4/3,3/2,5/3,1],
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],
v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0,0],
w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0],
ω=[−0.728255,0.331699,−1.02946,0.235703,−0.0876221,0.140854,0.0336982,−0.0353615,0.00497930,−0.0645900,0.0461795,−0.00757191,−0.00242717,0.0428140,−0.0744891,0.0386577,−0.352519,2.19805,−3.72927,1.94441,0.128877],
n=21,
Ri=(ρ(a))ti+(ρ(b))ti,
Si=(ρ(a)−ρ(b)ρ)2ui,
Xi=1/2(√σ(aa))vi+(√σ(bb))viρ4/3vi,
Yi=(σ(aa)+σ(bb)−2√σ(aa)√σ(bb)ρ8/3)wi,
f=n∑i=1ωiRiSiXiYi,
G=n∑i=11/2ωi(ρ(s))ti(√σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)−1.
TH2: .
Density and gradient dependent first row exchange-correlation functional. t=[1312,7/6,4/3,3/2,5/3,1712,3/2,5/3,116,5/3,116,2,5/3,116,2,7/6,4/3,3/2,5/3],
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
v=[0,0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0],
w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0],
ω=[0.678831,−1.75821,1.27676,−1.60789,0.365610,−0.181327,0.146973,0.147141,−0.0716917,−0.0407167,0.0214625,−0.000768156,0.0310377,−0.0720326,0.0446562,−0.266802,1.50822,−1.94515,0.679078],
n=19,
Ri=(ρ(a))ti+(ρ(b))ti,
Si=(ρ(a)−ρ(b)ρ)2ui,
Xi=1/2(√σ(aa))vi+(√σ(bb))viρ4/3vi,
Yi=(σ(aa)+σ(bb)−2√σ(aa)√σ(bb)ρ8/3)wi,
f=n∑i=1ωiRiSiXiYi,
G=n∑i=11/2ωi(ρ(s))ti(√σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)−1.
TH3: .
Density and gradient dependent first and second row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,1712,3/2,5/3,116,5/3,116,2,5/3,116,2,7/6,4/3,3/2,5/3,1312],
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],
v=[0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0,0],
w=[0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],
ω=[−0.142542,−0.783603,−0.188875,0.0426830,−0.304953,0.430407,−0.0997699,0.00355789,−0.0344374,0.0192108,−0.00230906,0.0235189,−0.0331157,0.0121316,0.441190,−2.27167,4.03051,−2.28074,0.0360204],
n=19,
Ri=(ρ(a))ti+(ρ(b))ti,
Si=(ρ(a)−ρ(b)ρ)2ui,
Xi=1/2(√σ(aa))vi+(√σ(bb))viρ4/3vi,
Yi=(σ(aa)+σ(bb)−2√σ(aa)√σ(bb)ρ8/3)wi,
f=n∑i=1ωiRiSiXiYi,
G=n∑i=11/2ωi(ρ(s))ti(√σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)−1.
TH4: .
Density an gradient dependent first and second row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,1712,3/2,5/3,116,5/3,116,2,5/3,116,2,7/6,4/3,3/2,5/3,1312],
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],
v=[0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0,0],
w=[0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],
ω=[0.0677353,−1.06763,−0.0419018,0.0226313,−0.222478,0.283432,−0.0165089,−0.0167204,−0.0332362,0.0162254,−0.000984119,0.0376713,−0.0653419,0.0222835,0.375782,−1.90675,3.22494,−1.68698,−0.0235810],
n=19,
Ri=(ρ(a))ti+(ρ(b))ti,
Si=(ρ(a)−ρ(b)ρ)2ui,
Xi=1/2(√σ(aa))vi+(√σ(bb))viρ4/3vi,
Yi=(σ(aa)+σ(bb)−2√σ(aa)√σ(bb)ρ8/3)wi,
f=n∑i=1ωiRiSiXiYi,
G=n∑i=11/2ωi(ρ(s))ti(√σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)−1.
THGFC: .
Density and gradient dependent first row exchange-correlation functional for closed shell systems. Total energies are improved by adding DN, where N is the number of electrons and D=0.1863. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,116,3/2,5/3,116,2],
v=[0,0,0,0,1,1,1,1,2,2,2,2],
ω=[−0.864448,0.565130,−1.27306,0.309681,−0.287658,0.588767,−0.252700,0.0223563,0.0140131,−0.0826608,0.0556080,−0.00936227],
n=12,
Ri=(ρ(a))ti+(ρ(b))ti,
Xi=1/2(√σ(aa))vi+(√σ(bb))viρ4/3vi,
f=n∑i=1ωiRiXi,
G=n∑i=11/2ωi(ρ(s))ti(√σ(ss))viρ4/3vi.
THGFCFO: .
Density and gradient dependent first row exchange-correlation functional. FCFO = FC + open shell fitting. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,116,3/2,5/3,116,2,3/2,5/3,116,2,7/6,4/3,3/2,5/3],
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0],
w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
ω=[−0.864448,0.565130,−1.27306,0.309681,−0.287658,0.588767,−0.252700,0.0223563,0.0140131,−0.0826608,0.0556080,−0.00936227,−0.00677146,0.0515199,−0.0874213,0.0423827,0.431940,−0.691153,−0.637866,1.07565],
n=20,
Ri=(ρ(a))ti+(ρ(b))ti,
Si=(ρ(a)−ρ(b)ρ)2ui,
Xi=1/2(√σ(aa))vi+(√σ(bb))viρ4/3vi,
Yi=(σ(aa)+σ(bb)−2√σ(aa)√σ(bb)ρ8/3)wi,
f=n∑i=1ωiRiSiXiYi,
G=n∑i=11/2ωi(ρ(s))ti(√σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)−1.
THGFCO: .
Density and gradient dependent first row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,116,3/2,5/3,116,2,3/2,5/3,116,2,7/6,4/3,3/2,5/3],
u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],
v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0],
w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],
ω=[−0.962998,0.860233,−1.54092,0.381602,−0.210208,0.391496,−0.107660,−0.0105324,0.00837384,−0.0617859,0.0383072,−0.00526905,−0.00381514,0.0321541,−0.0568280,0.0288585,0.368326,−0.328799,−1.22595,1.36412],
n=20,
Ri=(ρ(a))ti+(ρ(b))ti,
Si=(ρ(a)−ρ(b)ρ)2ui,
Xi=1/2(√σ(aa))vi+(√σ(bb))viρ4/3vi,
Yi=(σ(aa)+σ(bb)−2√σ(aa)√σ(bb)ρ8/3)wi,
f=n∑i=1ωiRiSiXiYi,
G=n∑i=11/2ωi(ρ(s))ti(√σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)−1.
THGFL: .
Density dependent first row exchange-correlation functional for closed shell systems. t=[7/6,4/3,3/2,5/3],
ω=[−1.06141,0.898203,−1.34439,0.302369],
n=4,
Ri=(ρ(a))ti+(ρ(b))ti,
f=n∑i=1ωiRi.
TPSSC: TPSS Correlation Functional
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
TPSSX: TPSS Exchange Functional
J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).
VSXC: .
p=[−0.98,0.3271,0.7035],
q=[−0.003557,−0.03229,0.007695],
r=[0.00625,−0.02942,0.05153],
t=[−0.00002354,0.002134,0.00003394],
u=[−0.0001283,−0.005452,−0.001269],
v=[0.0003575,0.01578,0.001296],
α=[0.001867,0.005151,0.00305],
g=(ρ(s))4/3F(χ(s),zs,p1,q1,r1,t1,u1,v1,α1)+dsϵ(ρ(s),0)F(χ(s),zs,p2,q2,r2,t2,u2,v2,α2),
G=(ρ(s))4/3F(χ(s),zs,p1,q1,r1,t1,u1,v1,α1)+dsϵ(ρ(s),0)F(χ(s),zs,p2,q2,r2,t2,u2,v2,α2),
f=F(x,z,p3,q3,r3,t3,u3,v3,α3)(ϵ(ρ(a),ρ(b))−ϵ(ρ(a),0)−ϵ(ρ(b),0)),
x=(χ(a))2+(χ(b))2,
zs=τ(s)(ρ(s))5/3−cf,
z=τ(a)(ρ(a))5/3+τ(b)(ρ(b))5/3−2cf,
ds=1−(χ(s))24zs+4cf,
F(x,z,p,q,c,d,e,f,α)=pλ(x,z,α)+qx2+cz(λ(x,z,α))2+dx4+ex2z+fz2(λ(x,z,α))3,
λ(x,z,α)=1+α(x2+z),
cf=3/532/3(π2)2/3,
T=[0.031091,0.015545,0.016887],
U=[0.21370,0.20548,0.11125],
V=[7.5957,14.1189,10.357],
W=[3.5876,6.1977,3.6231],
X=[1.6382,3.3662,0.88026],
Y=[0.49294,0.62517,0.49671],
P=[1,1,1],
ϵ(α,β)=(α+β)(e(l(α,β),T1,U1,V1,W1,X1,Y1,P1)−e(l(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1−(ζ(α,β))4)c+(e(l(α,β),T2,U2,V2,W2,X2,Y2,P2)−e(l(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),
l(α,β)=1/43√342/33√1π(α+β),
ζ(α,β)=α−βα+β,
ω(z)=(1+z)4/3+(1−z)4/3−223√2−2,
e(r,t,u,v,w,x,y,p)=−2t(1+ur)ln(1+1/21t(v√r+wr+xr3/2+yrp+1)),
c=1.709921.
VW: von Weizsäcker kinetic energy
Automatically generated von Weizsäcker kinetic energy. g=cσ(ss)ρ(s),
G=cσ(ss)ρ(s),
c=1/8.
VWN3: Vosko-Wilk-Nusair (1980) III local correlation energy
VWN 1980(III) functional x=1/46√345/66√1πρ,
ζ=ρ(a)−ρ(b)ρ,
f=ρe,
k=[0.0310907,0.01554535,−1/6π−2],
l=[−0.409286,−0.743294,−0.228344],
m=[13.0720,20.1231,1.06835],
n=[42.7198,101.578,11.4813],
e=Λ+z(λ−Λ),
y=98(1+ζ)4/3+98(1−ζ)4/3−9/4,
Λ=q(k1,l1,m1,n1),
λ=q(k2,l2,m2,n2),
q(A,p,c,d)=A(ln(x2X(x,c,d))+2carctan(Q(c,d)2x+c)(Q(c,d))−1−cp(ln((x−p)2X(x,c,d))+2(c+2p)arctan(Q(c,d)2x+c)(Q(c,d))−1)(X(p,c,d))−1),
Q(c,d)=√4d−c2,
X(i,c,d)=i2+ci+d,
z=4y93√2−9.
VWN5: Vosko-Wilk-Nusair (1980) V local correlation energy
VWN 1980(V) functional. The fitting parameters for Δεc(rs,ζ)V appear in the caption of table 7 in the reference. x=1/46√345/66√1πρ,
ζ=ρ(a)−ρ(b)ρ,
f=ρe,
k=[0.0310907,0.01554535,−1/6π−2],
l=[−0.10498,−0.325,−0.0047584],
m=[3.72744,7.06042,1.13107],
n=[12.9352,18.0578,13.0045],
e=Λ+αy(1+hζ4),
y=98(1+ζ)4/3+98(1−ζ)4/3−9/4,
h=4/9λ−Λ(3√2−1)α−1,
Λ=q(k1,l1,m1,n1),
λ=q(k2,l2,m2,n2),
α=q(k3,l3,m3,n3),
q(A,p,c,d)=A(ln(x2X(x,c,d))+2carctan(Q(c,d)2x+c)(Q(c,d))−1−cp(ln((x−p)2X(x,c,d))+2(c+2p)arctan(Q(c,d)2x+c)(Q(c,d))−1)(X(p,c,d))−1),
Q(c,d)=√4d−c2,
X(i,c,d)=i2+ci+d.
XC-M05: M05 Meta-GGA Exchange-Correlation Functional
Here it means M05 exchange-correlation part which excludes HF exact exchange term. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005).
XC-M05-2X: M05-2X Meta-GGA Exchange-Correlation Functional
Here it means M05-2X exchange-correlation part which excludes HF exact exchange term. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).
XC-M06: M06 Meta-GGA Exchange-Correlation Functional
Here it means M06 exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
XC-M06-2X: M06-2X Meta-GGA Exchange-Correlation Functional
Here it means M06-2X exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).
XC-M06-HF: M06-HF Meta-GGA Exchange-Correlation Functional
Here it means M06-HF exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006).
XC-M06-L: M06-L Meta-GGA Exchange-Correlation Functional
Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).
XC-M08-HX: M08-HX Meta-GGA Exchange-Correlation Functional
Here it means M08-HX exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).
XC-M08-SO: M08-SO Meta-GGA Exchange-Correlation Functional
Here it means M08-SO exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).
XC-M11-L: M11-L Exchange-Correlation Functional
R. Peverati and D. G. Truhlar, Journal of Physical Chemistry Letters 3, 117 (2012).
XC-SOGGA: SOGGA Exchange-Correlation Functional
Y. Zhao and D. G. Truhlar, J. Chem. Phys. 128, 184109 (2008).
XC-SOGGA11: SOGGA11 Exchange-Correlation Functional
R. Peverati, Y. Zhao and D. G. Truhlar, J. Phys. Chem. Lett. 2 (16), 1991 (2011).
XC-SOGGA11-X: SOGGA11-X Exchange-Correlation Functional
Here it means SOGGA11-X exchange-correlation part which excludes HF exact exchange term. R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011).