Density functional descriptions

Divergence free semiempirical gradient-corrected exchange energy functional. λ=γ in ref. g=c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,

G=c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,

c=3/83342/33π1,

β=0.0076,

λ=0.004.

B86 with modified gradient correction for large density gradients. g=c(ρ(s))4/3β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5,

G=c(ρ(s))4/3β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5,

c=3/83342/33π1,

β=0.00375,

λ=0.007.

Re-optimised β of B86 used in part 3 of Becke’s 1997 paper. g=c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,

G=c(ρ(s))4/3(1+β(χ(s))2)1+λ(χ(s))2,

c=3/83342/33π1,

β=0.00787,

λ=0.004.

G=(ρ(s))4/3(c+β(χ(s))21+6βχ(s)arcsinh(χ(s))),

g=(ρ(s))4/3(c+β(χ(s))21+6βχ(s)arcsinh(χ(s))),

c=3/83342/33π1,

β=0.0042.

Correlation functional depending on B86MGC exchange functional with empirical atomic parameters, t and u. The exchange functional that is used in conjunction with B88C should replace B88MGC here. f=0.8ρ(a)ρ(b)q2(1ln(1+q)q),

q=t(x+y),

x=0.5(c3ρ(a)+β(χ(a))23ρ(a)(1+λ(χ(a))2)4/5)1,

y=0.5(c3ρ(b)+β(χ(b))23ρ(b)(1+λ(χ(b))2)4/5)1,

t=0.63,

g=0.01ρ(s)dz4(12ln(1+1/2z)z),

z=2ur,

r=0.5ρ(s)(c(ρ(s))4/3+β(χ(s))2(ρ(s))4/3(1+λ(χ(s))2)4/5)1,

u=0.96,

d=τ(s)1/4σ(ss)ρ(s),

G=0.01ρ(s)dz4(12ln(1+1/2z)z),

c=3/83342/33π1,

β=0.00375,

λ=0.007.

tau dependent Dynamical correlation functional. T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

f=E1+l((χ(a))2+(χ(b))2),

g=Fϵ(ρ(s),0)H(1+ν(χ(s))2)2,

G=Fϵ(ρ(s),0)H(1+ν(χ(s))2)2,

E=ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0),

l=0.0031,

F=τ(s)1/4σ(ss)ρ(s),

H=3/562/3(π2)2/3(ρ(s))5/3,

ν=0.038,

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

This functional needs to be mixed with 0.1943*exact exchange. T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.9454,0.7471,4.5961],

B=[0.1737,2.3487,2.4868],

C=[0.8094,0.5073,0.7481],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),

G=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

Re-parameterization of the B97 functional in a self-consistent procedure by Hamprecht et al. This functional needs to be mixed with 0.21*exact exchange. T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.955689,0.788552,5.47869],

B=[0.0820011,2.71681,2.87103],

C=[0.789518,0.573805,0.660975],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),

G=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)

K=12sρsUs, where Us=(1exxex/2)/b, b=x3ex8πρs and x is defined by the nonlinear equation xe2x/3x2=2π2/3ρ5/3s3Qs, where Qs=(υs2γDs)/6, Ds=τsσss4ρs and γ=1.

A. D. Becke and M. R. Roussel,Phys. Rev. A 39, 3761 (1989)

As for BR but with γ=0.8.

Hybrid exchange-correlation functional comprimising Becke’s 1998 exchange and Wigner’s spin-polarised correlation functionals. α=3/83342/33π1,

g=α(ρ(s))4/3β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),

G=α(ρ(s))4/3β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),

f=4cρ(a)ρ(b)ρ1(1+d3ρ)1,

β=0.0042,

c=0.04918,

d=0.349.

R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1974); C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988)

CS1 is formally identical to CS2, except for a reformulation in which the terms involving υ are eliminated by integration by parts. This makes the functional more economical to evaluate. In the limit of exact quadrature, CS1 and CS2 are identical, but small numerical differences appear with finite integration grids.

R. Colle and O. Salvetti, Theor. Chim. Acta 37, 329 (1974); C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988)

CS2 is defined through K=a(ρ+2bρ5/3[ραtα+ρβtβρtW]ecρ1/31+dρ1/3) where tα=τα2υα8tβ=τβ2υβ8tW=18σρ12υ and the constants are a=0.04918,b=0.132,c=0.2533,d=0.349.

Automatically generated Slater-Dirac exchange. g=c(ρ(s))4/3,

c=3/83342/33π1.

Local-density approximation of correlation energy
for short-range interelectronic interaction erf(μr21)/r12,
S. Paziani, S. Moroni, P. Gori-Giorgi, and G. B. Bachelet, Phys. Rev. B 73, 155111 (2006).

ϵSRc(rs,ζ,μ)=ϵPW92c(rs,ζ)[ϕ2(ζ)]3Q(μrsϕ2(ζ))+a1μ3+a2μ4+a3μ5+a4μ6+a5μ8(1+b20μ2)4, where Q(x)=2ln(2)2π2ln(1+ax+bx2+cx31+ax+dx2), with a=5.84605, c=3.91744, d=3.44851, and b=d3πα/(4ln(2)4). The parameters ai(rs,ζ) are given by a1=4b60C3+b80C5,a2=4b60C2+b80C4+6b40ϵPW92c,a3=b80C3,a4=b80C2+4b60ϵPW92c,a5=b80ϵPW92c, with C2=3(1ζ2)gc(0,rs,ζ=0)8r3sC3=(1ζ2)g(0,rs,ζ=0)2πr3sC4=9c4(rs,ζ)64r3sC5=9c5(rs,ζ)402πr3sc4(rs,ζ)=(1+ζ2)2g(0,rs(21+ζ)1/3,ζ=1)+(1ζ2)2×g(0,rs(21ζ)1/3,ζ=1)+(1ζ2)D2(rs)ϕ8(ζ)5α2r2sc5(rs,ζ)=(1+ζ2)2g(0,rs(21+ζ)1/3,ζ=1)+(1ζ2)2×g(0,rs(21ζ)1/3,ζ=1)+(1ζ2)D3(rs), and [b0(rs)=0.784949rs[g(0,rs,ζ=1)=25/35α2r2s10.02267rs(1+0.4319rs+0.04r2s)[D2(rs)=e0.547rsr2s(0.388rs+0.676r2s)[D3(rs)=e0.31rsr3s(4.95rs+r2s). Finally, ϵPW92c(rs,ζ) is the Perdew-Wang parametrization of the correlation energy of the standard uniform electron gas [J.P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)], and g(0,rs,ζ=0)=12(1Brs+Cr2s+Dr3s+Er4s)edrs, is the on-top pair-distribution function of the standard jellium model [P. Gori-Giorgi and J.P. Perdew, Phys. Rev. B 64, 155102 (2001)], where B=0.0207, C=0.08193, D=0.01277, E=0.001859, d=0.7524. The correlation part of the on-top pair-distribution function is gc(0,rs,ζ=0)=g(0,rs,ζ=0)12.

Toulouse-Colonna-Savin range-separated correlation functional based on PBE, see J. Toulouse et al., J. Chem. Phys. 122, 014110 (2005).

Hartree-Fock exact exchange functional can be used to construct hybrid exchange-correlation functional.

Local-density approximation of exchange energy
for short-range interelectronic interaction erf(μr12)/r12,
A. Savin, in Recent Developments and Applications of Modern Density Functional Theory, edited by J.M. Seminario (Elsevier, Amsterdam, 1996).

ϵSRx(rs,ζ,μ)=34πϕ4(ζ)αrs12(1+ζ)4/3fx(rs,μ(1+ζ)1/3)+12(1ζ)4/3fx(rs,μ(1ζ)1/3) with ϕn(ζ)=12[(1+ζ)n/3+(1ζ)n/3], fx(rs,μ)=μπ[(2y4y3)e1/4y23y+4y3+πerf(12y)],y=μαrs2, and α=(4/9π)1/3.

Toulouse-Colonna-Savin range-separated exchange functional based on PBE, see J. Toulouse et al., J. Chem. Phys. 122, 014110 (2005).

α=3/83342/33π1,

g=(ρ(s))4/3(α1137(χ(s))3/2),

G=(ρ(s))4/3(α1137(χ(s))3/2).

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.51473,6.9298,24.707,23.110,11.323],

B=[0.48951,0.2607,0.4329,1.9925,2.4853],

C=[1.09163,0.7472,5.0783,4.1075,1.1717],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.542352,7.01464,28.3822,35.0329,20.4284],

B=[0.562576,0.0171436,1.30636,1.05747,0.885429],

C=[1.09025,0.799194,5.57212,5.86760,3.04544],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)+e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

A=[0.72997,3.35287,11.543,8.08564,4.47857],

B=[0.222601,0.0338622,0.012517,0.802496,1.55396],

C=[1.0932,0.744056,5.5992,6.78549,4.49357],

λ=[0.006,0.2,0.004],

d=1/2(χ(a))2+1/2(χ(b))2,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(A0+A1η(d,λ1)+A2(η(d,λ1))2+A3(η(d,λ1))3+A4(η(d,λ1))4),

η(θ,μ)=μθ1+μθ,

g=ϵ(ρ(s),0)(B0+B1η((χ(s))2,λ2)+B2(η((χ(s))2,λ2))2+B3(η((χ(s))2,λ2))3+B4(η((χ(s))2,λ2))4)3/83342/33π1(ρ(s))4/3(C0+C1η((χ(s))2,λ3)+C2(η((χ(s))2,λ3))2+C3(η((χ(s))2,λ3))3+C4(η((χ(s))2,λ3))4),

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

Henderson-Janesko-Scuseria range-separated exchange functional based on a model of an exchange hole derived by a constraint-satisfaction technique, see T. M. Henderson et al., J. Chem. Phys. 128, 194105 (2008).

LSDA exchange functional with density represented as a function of τ. g=1/2E(2τ(s)),

E(α)=1/9c54/559(α33(π2)2/3)4/5,

c=3/4333π1,

G=1/2E(2τ(s)).

C. Lee, W. Yang and R. G. Parr, Phys. Rev. B 37, 785(1988); B. Miehlich, A. Savin, H. Stoll and H. Preuss, Chem. Phys. Lett. 157, 200 (1989). f=4Aρ(a)ρ(b)(1+d3ρ)1ρ1ABω(ρ(a)ρ(b)(822/3cf((ρ(a))8/3+(ρ(b))8/3)+(4718718δ)σ(5/21/18δ)(σ(aa)+σ(bb))1/9(δ11)(ρ(a)σ(aa)ρ+ρ(b)σ(bb)ρ))2/3ρ2σ+(2/3ρ2(ρ(a))2)σ(bb)+(2/3ρ2(ρ(b))2)σ(aa)),

ω=ec3ρρ11/3(1+d3ρ)1,

δ=c3ρ+d13ρ(1+d3ρ)1,

cf=3/1032/3(π2)2/3,

A=0.04918,

B=0.132,

c=0.2533,

d=0.349.

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

tausMFM=1/2τ(s),

ds=2tausMFM1/4σ(ss)ρ(s),

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[1.0,1.09297,3.79171,2.82810,10.58909],

cCss=[1.0,3.05430,7.61854,1.47665,11.92365],

yCab=0.0031,

yCss=0.06,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))Gab(χ(a),χ(b)),

g=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM,

G=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM.

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[1.0,0.56833,1.30057,5.50070,9.06402,32.21075,23.73298,70.22996,29.88614,60.25778,13.22205,15.23694],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

tausMFM=1/2τ(s).

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

tausMFM=1/2τ(s),

ds=2tausMFM1/4σ(ss)ρ(s),

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[1.0,3.78569,14.15261,7.46589,17.94491],

cCss=[1.0,3.77344,26.04463,30.69913,9.22695],

yCab=0.0031,

yCss=0.06,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))Gab(χ(a),χ(b)),

g=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM,

G=1/2ϵ(ρ(s),0)Gss(χ(s))dstausMFM.

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[1.0,0.08151,0.43956,3.22422,2.01819,8.79431,0.00295,9.82029,4.82351,48.17574,3.64802,34.02248],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

tausMFM=1/2τ(s).

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[0.8833596,33.57972,70.43548,49.78271,18.52891],

cCss=[0.3097855,5.528642,13.47420,32.13623,28.46742],

yCab=0.0031,

yCss=0.06,

x=(χ(a))2+(χ(b))2,

tausMFM=1/2τ(s),

tauaMFM=1/2τ(a),

taubMFM=1/2τ(b),

zs=2tausMFM(ρ(s))5/3cf,

z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/32cf,

cf=3/562/3(π2)2/3,

ds=1(χ(s))24zs+4cf,

h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

dCab=[0.1166404,0.09120847,0.06726189,0.00006720580,0.0008448011,0.0],

dCss=[0.6902145,0.09847204,0.2214797,0.001968264,0.006775479,0.0],

aCab=0.003050,

aCss=0.005151,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),

g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,

G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π,

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[0.4600000,0.2206052,0.09431788,2.164494,2.556466,14.22133,15.55044,35.98078,27.22754,39.24093,15.22808,15.22227],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

tausMFM=1/2τ(s).

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[3.741593,218.7098,453.1252,293.6479,62.87470],

cCss=[0.5094055,1.491085,17.23922,38.59018,28.45044],

yCab=0.0031,

yCss=0.06,

x=(χ(a))2+(χ(b))2,

tausMFM=1/2τ(s),

tauaMFM=1/2τ(a),

taubMFM=1/2τ(b),

zs=2tausMFM(ρ(s))5/3cf,

z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/32cf,

cf=3/562/3(π2)2/3,

ds=1(χ(s))24zs+4cf,

h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

dCab=[2.741539,0.6720113,0.07932688,0.001918681,0.002032902,0.0],

dCss=[0.4905945,0.1437348,0.2357824,0.001871015,0.003788963,0.0],

aCab=0.003050,

aCss=0.005151,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),

g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,

G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[1.674634,57.32017,59.55416,231.1007,125.5199],

cCss=[0.1023254,2.453783,29.13180,34.94358,23.15955],

yCab=0.0031,

yCss=0.06,

x=(χ(a))2+(χ(b))2,

tausMFM=1/2τ(s),

tauaMFM=1/2τ(a),

taubMFM=1/2τ(b),

zs=2tausMFM(ρ(s))5/3cf,

z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/32cf,

cf=3/562/3(π2)2/3,

ds=1(χ(s))24zs+4cf,

h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

dCab=[0.6746338,0.1534002,0.09021521,0.001292037,0.0002352983,0.0],

dCss=[0.8976746,0.2345830,0.2368173,0.0009913890,0.01146165,0.0],

aCab=0.003050,

aCss=0.005151,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),

g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,

G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[0.1179732,1.066708,0.1462405,7.481848,3.776679,44.36118,18.30962,100.3903,38.64360,98.06018,25.57716,35.90404],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

eslsda=3/83342/33π1(ρ(s))4/3,

d=[0.1179732,0.002500000,0.01180065,0.0,0.0,0.0],

α=0.001867,

zs=2tausMFM(ρ(s))5/3cf,

h(x,z)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

cf=3/562/3(π2)2/3,

tausMFM=1/2τ(s).

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

Gab(chia,chib)=ni=0cCabi(yCab(chia2+chib2)1+yCab(chia2+chib2))i,

Gss(chis)=ni=0cCssi(yCsschis21+yCsschis2)i,

n=4,

cCab=[0.6042374,177.6783,251.3252,76.35173,12.55699],

cCss=[0.5349466,0.5396620,31.61217,51.49592,29.19613],

yCab=0.0031,

yCss=0.06,

x=(χ(a))2+(χ(b))2,

tausMFM=1/2τ(s),

tauaMFM=1/2τ(a),

taubMFM=1/2τ(b),

zs=2tausMFM(ρ(s))5/3cf,

z=2tauaMFM(ρ(a))5/3+2taubMFM(ρ(b))5/32cf,

cf=3/562/3(π2)2/3,

ds=1(χ(s))24zs+4cf,

h(x,z,d0,d1,d2,d3,d4,d5,α)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

dCab=[0.3957626,0.5614546,0.01403963,0.0009831442,0.003577176,0.0],

dCss=[0.4650534,0.1617589,0.1833657,0.0004692100,0.004990573,0.0],

aCab=0.003050,

aCss=0.005151,

f=(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0))(Gab(χ(a),χ(b))+h(x,z,dCab0,dCab1,dCab2,dCab3,dCab4,dCab5,aCab)),

g=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds,

G=ϵ(ρ(s),0)(Gss(χ(s))+h(χ(s),zs,dCss0,dCss1,dCss2,dCss3,dCss4,dCss5,aCss))ds.

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[0.3987756,0.2548219,0.3923994,2.103655,6.302147,10.97615,30.97273,23.18489,56.73480,21.60364,34.21814,9.049762],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

eslsda=3/83342/33π1(ρ(s))4/3,

d=[0.6012244,0.004748822,0.008635108,0.000009308062,0.00004482811,0.0],

α=0.001867,

zs=2tausMFM(ρ(s))5/3cf,

h(x,z)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

cf=3/562/3(π2)2/3,

tausMFM=1/2τ(s).

g=3/4363π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),

G=3/4363π2(ρ(s))4/3F(S)Fs(ws)π+eslsdah(χ(s),zs),

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725,

n=11,

A=[0.5877943,0.1371776,0.2682367,2.515898,2.978892,8.710679,16.88195,4.489724,32.99983,14.49050,20.43747,12.56504],

Fs(ws)=ni=0Aiwsi,

ws=ts1ts+1,

ts=tslsdatausMFM,

tslsda=3/1062/3(π2)2/3(ρ(s))5/3,

eslsda=3/83342/33π1(ρ(s))4/3,

d=[0.1422057,0.0007370319,0.01601373,0.0,0.0,0.0],

α=0.001867,

zs=2tausMFM(ρ(s))5/3cf,

h(x,z)=d0λ(x,z,α)+d1x2+d2z(λ(x,z,α))2+d3x4+d4x2z+d5z2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

cf=3/562/3(π2)2/3,

tausMFM=1/2τ(s).

Meta-GGA correlation functional based on first principles, see M. Modrzejewski et al., J. Chem. Phys. 137, 204121 (2012).

g=3π(ρ(s))3τ(s)1/4υ(s).

MK00 with gradient correction of the form of B88X but with different empirical parameter. g=3π(ρ(s))3τ(s)1/4υ(s)β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)),

β=0.0016,

G=3π(ρ(s))3τ(s)1/4υ(s)β(ρ(s))4/3(χ(s))21+6βχ(s)arcsinh(χ(s)).

Gradient correction to VWN. f=ρe+eΦC(r)σdρ4/3,

r=1/43342/331πρ,

x=r,

ζ=ρ(a)ρ(b)ρ,

k=[0.0310907,0.01554535,1/6π2],

l=[0.10498,0.325,0.0047584],

m=[3.72744,7.06042,1.13107],

n=[12.9352,18.0578,13.0045],

e=Λ+ωy(1+hζ4),

y=98(1+ζ)4/3+98(1ζ)4/39/4,

h=4/9λΛ(321)ω1,

Λ=q(k1,l1,m1,n1),

λ=q(k2,l2,m2,n2),

ω=q(k3,l3,m3,n3),

q(A,p,c,d)=A(ln(x2X(x,c,d))+2carctan(Q(c,d)2x+c)(Q(c,d))1cp(ln((xp)2X(x,c,d))+2(c+2p)arctan(Q(c,d)2x+c)(Q(c,d))1)(X(p,c,d))1),

Q(c,d)=4dc2,

X(i,c,d)=i2+ci+d,

Φ=0.007390075zσC(r)ρ7/6,

d=32(1/2+1/2ζ)5/3+(1/21/2ζ)5/3,

C(r)=0.001667+0.002568+αr+βr21+ξr+δr2+10000βr3,

z=0.11,

α=0.023266,

β=0.000007389,

ξ=8.723,

δ=0.472.

f=ρ(ϵ(ρ(a),ρ(b))+H(d,ρ(a),ρ(b))),

G=ρ(ϵ(ρ(s),0)+C(Q,ρ(s),0)),

d=1/12σ35/6u(ρ(a),ρ(b))6π1ρ7/6,

u(α,β)=1/2(1+ζ(α,β))2/3+1/2(1ζ(α,β))2/3,

H(d,α,β)=1/2(u(ρ(a),ρ(b)))3λ2ln(1+2ι(d2+A(α,β)d4)λ(1+A(α,β)d2+(A(α,β))2d4))ι1,

A(α,β)=2ιλ1(e2ιϵ(α,β)(u(ρ(a),ρ(b)))3λ21)1,

ι=0.0716,

λ=νκ,

ν=16333π2π,

κ=0.004235,

Z=0.001667,

ϕ(r)=θ(r)Z,

θ(r)=110002.568+Ξr+Φr21+Λr+Υr2+10Φr3,

Ξ=23.266,

Φ=0.007389,

Λ=8.723,

Υ=0.472,

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4,

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

C(d,α,β)=K(Q,α,β)+M(Q,α,β),

M(d,α,β)=0.5ν(ϕ(r(α,β))κ3/7Z)d2e335.978946732/3d23π5ρ,

K(d,α,β)=0.2500000000λ2ln(1+2ι(d2+N(α,β)d4)λ(1+N(α,β)d2+(N(α,β))2d4))ι1,

N(α,β)=2ιλ1(e4ιϵ(α,β)λ21)1,

Q=1/12σ(ss)3235/66π1ρ7/6.

g=1/2E(2ρ(s)),

G=1/2E(2ρ(s)),

E(n)=3/4333π2n4/3F(S)π,

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=0.804,

μ=1/3δπ2,

δ=0.066725.

Changes the value of the constant R from the original PBEX functional g=1/2E(2ρ(s)),

G=1/2E(2ρ(s)),

E(n)=3/4333π2n4/3F(S)π,

S=1/12χ(s)62/33π2,

F(S)=1+RR(1+μS2R)1,

R=1.245,

μ=1/3δπ2,

δ=0.066725.

GGA Exchange Functional. g=1/2E(2ρ(s)),

E(n)=3/4333π1n4/3F(S),

F(S)=(1+1.296S2+14S4+0.2S6)1/15,

S=1/12χ(s)62/33π2,

G=1/2E(2ρ(s)).

f=ρ(ϵ(ρ(a),ρ(b))+H(d,ρ(a),ρ(b))),

G=ρ(ϵ(ρ(s),0)+C(Q,ρ(s),0)),

d=1/12σ35/6u(ρ(a),ρ(b))6π1ρ7/6,

u(α,β)=1/2(1+ζ(α,β))2/3+1/2(1ζ(α,β))2/3,

H(d,α,β)=L(d,α,β)+J(d,α,β),

L(d,α,β)=1/2(u(ρ(a),ρ(b)))3λ2ln(1+2ι(d2+A(α,β)d4)λ(1+A(α,β)d2+(A(α,β))2d4))ι1,

J(d,α,β)=ν(ϕ(r(α,β))κ3/7Z)(u(ρ(a),ρ(b)))3d2e4003(u(ρ(a),ρ(b)))432/3d23π5ρ,

A(α,β)=2ιλ1(e2ιϵ(α,β)(u(ρ(a),ρ(b)))3λ21)1,

ι=0.09,

λ=νκ,

ν=16333π2π,

κ=0.004235,

Z=0.001667,

ϕ(r)=θ(r)Z,

θ(r)=110002.568+Ξr+Φr21+Λr+Υr2+10Φr3,

Ξ=23.266,

Φ=0.007389,

Λ=8.723,

Υ=0.472,

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4,

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921,

C(d,α,β)=K(Q,α,β)+M(Q,α,β),

M(d,α,β)=0.5ν(ϕ(r(α,β))κ3/7Z)d2e335.978946732/3d23π5ρ,

K(d,α,β)=0.2500000000λ2ln(1+2ι(d2+N(α,β)d4)λ(1+N(α,β)d2+(N(α,β))2d4))ι1,

N(α,β)=2ιλ1(e4ιϵ(α,β)λ21)1,

Q=1/12σ(ss)3235/66π1ρ7/6.

g=1/2E(2ρ(s)),

G=1/2E(2ρ(s)),

E(n)=3/4333π2n4/3F(S)π,

S=1/12χ(s)62/33π2,

F(S)=1+0.19645Sarcsinh(7.7956S)+(0.27430.1508e100S2)S21+0.19645Sarcsinh(7.7956S)+0.004S4.

Electron-gas correlation energy. T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

f=ρϵ(ρ(a),ρ(b)),

ϵ(α,β)=e(r(α,β),T1,U1,V1,W1,X1,Y1,P1)e(r(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(r(α,β),T2,U2,V2,W2,X2,Y2,P2)e(r(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4,

r(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

g=ρ(s).

Automatically generated Thomas-Fermi Kinetic Energy. g=ctf(ρ(s))5/3,

ctf=3/1022/332/3(π2)2/3.

Density and gradient dependent first row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,116,3/2,5/3,116,2,3/2,5/3,116,2,7/6,4/3,3/2,5/3,1],

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],

v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0,0],

w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0,0],

ω=[0.728255,0.331699,1.02946,0.235703,0.0876221,0.140854,0.0336982,0.0353615,0.00497930,0.0645900,0.0461795,0.00757191,0.00242717,0.0428140,0.0744891,0.0386577,0.352519,2.19805,3.72927,1.94441,0.128877],

n=21,

Ri=(ρ(a))ti+(ρ(b))ti,

Si=(ρ(a)ρ(b)ρ)2ui,

Xi=1/2(σ(aa))vi+(σ(bb))viρ4/3vi,

Yi=(σ(aa)+σ(bb)2σ(aa)σ(bb)ρ8/3)wi,

f=ni=1ωiRiSiXiYi,

G=ni=11/2ωi(ρ(s))ti(σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)1.

Density and gradient dependent first row exchange-correlation functional. t=[1312,7/6,4/3,3/2,5/3,1712,3/2,5/3,116,5/3,116,2,5/3,116,2,7/6,4/3,3/2,5/3],

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],

v=[0,0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0],

w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0],

ω=[0.678831,1.75821,1.27676,1.60789,0.365610,0.181327,0.146973,0.147141,0.0716917,0.0407167,0.0214625,0.000768156,0.0310377,0.0720326,0.0446562,0.266802,1.50822,1.94515,0.679078],

n=19,

Ri=(ρ(a))ti+(ρ(b))ti,

Si=(ρ(a)ρ(b)ρ)2ui,

Xi=1/2(σ(aa))vi+(σ(bb))viρ4/3vi,

Yi=(σ(aa)+σ(bb)2σ(aa)σ(bb)ρ8/3)wi,

f=ni=1ωiRiSiXiYi,

G=ni=11/2ωi(ρ(s))ti(σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)1.

Density and gradient dependent first and second row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,1712,3/2,5/3,116,5/3,116,2,5/3,116,2,7/6,4/3,3/2,5/3,1312],

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],

v=[0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0,0],

w=[0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

ω=[0.142542,0.783603,0.188875,0.0426830,0.304953,0.430407,0.0997699,0.00355789,0.0344374,0.0192108,0.00230906,0.0235189,0.0331157,0.0121316,0.441190,2.27167,4.03051,2.28074,0.0360204],

n=19,

Ri=(ρ(a))ti+(ρ(b))ti,

Si=(ρ(a)ρ(b)ρ)2ui,

Xi=1/2(σ(aa))vi+(σ(bb))viρ4/3vi,

Yi=(σ(aa)+σ(bb)2σ(aa)σ(bb)ρ8/3)wi,

f=ni=1ωiRiSiXiYi,

G=ni=11/2ωi(ρ(s))ti(σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)1.

Density an gradient dependent first and second row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,1712,3/2,5/3,116,5/3,116,2,5/3,116,2,7/6,4/3,3/2,5/3,1312],

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0],

v=[0,0,0,0,1,1,1,1,2,2,2,0,0,0,0,0,0,0,0],

w=[0,0,0,0,0,0,0,0,0,0,0,1,1,1,0,0,0,0,0],

ω=[0.0677353,1.06763,0.0419018,0.0226313,0.222478,0.283432,0.0165089,0.0167204,0.0332362,0.0162254,0.000984119,0.0376713,0.0653419,0.0222835,0.375782,1.90675,3.22494,1.68698,0.0235810],

n=19,

Ri=(ρ(a))ti+(ρ(b))ti,

Si=(ρ(a)ρ(b)ρ)2ui,

Xi=1/2(σ(aa))vi+(σ(bb))viρ4/3vi,

Yi=(σ(aa)+σ(bb)2σ(aa)σ(bb)ρ8/3)wi,

f=ni=1ωiRiSiXiYi,

G=ni=11/2ωi(ρ(s))ti(σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)1.

Density and gradient dependent first row exchange-correlation functional for closed shell systems. Total energies are improved by adding DN, where N is the number of electrons and D=0.1863. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,116,3/2,5/3,116,2],

v=[0,0,0,0,1,1,1,1,2,2,2,2],

ω=[0.864448,0.565130,1.27306,0.309681,0.287658,0.588767,0.252700,0.0223563,0.0140131,0.0826608,0.0556080,0.00936227],

n=12,

Ri=(ρ(a))ti+(ρ(b))ti,

Xi=1/2(σ(aa))vi+(σ(bb))viρ4/3vi,

f=ni=1ωiRiXi,

G=ni=11/2ωi(ρ(s))ti(σ(ss))viρ4/3vi.

Density and gradient dependent first row exchange-correlation functional. FCFO = FC + open shell fitting. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,116,3/2,5/3,116,2,3/2,5/3,116,2,7/6,4/3,3/2,5/3],

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],

v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0],

w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],

ω=[0.864448,0.565130,1.27306,0.309681,0.287658,0.588767,0.252700,0.0223563,0.0140131,0.0826608,0.0556080,0.00936227,0.00677146,0.0515199,0.0874213,0.0423827,0.431940,0.691153,0.637866,1.07565],

n=20,

Ri=(ρ(a))ti+(ρ(b))ti,

Si=(ρ(a)ρ(b)ρ)2ui,

Xi=1/2(σ(aa))vi+(σ(bb))viρ4/3vi,

Yi=(σ(aa)+σ(bb)2σ(aa)σ(bb)ρ8/3)wi,

f=ni=1ωiRiSiXiYi,

G=ni=11/2ωi(ρ(s))ti(σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)1.

Density and gradient dependent first row exchange-correlation functional. t=[7/6,4/3,3/2,5/3,4/3,3/2,5/3,116,3/2,5/3,116,2,3/2,5/3,116,2,7/6,4/3,3/2,5/3],

u=[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1],

v=[0,0,0,0,1,1,1,1,2,2,2,2,0,0,0,0,0,0,0,0],

w=[0,0,0,0,0,0,0,0,0,0,0,0,1,1,1,1,0,0,0,0],

ω=[0.962998,0.860233,1.54092,0.381602,0.210208,0.391496,0.107660,0.0105324,0.00837384,0.0617859,0.0383072,0.00526905,0.00381514,0.0321541,0.0568280,0.0288585,0.368326,0.328799,1.22595,1.36412],

n=20,

Ri=(ρ(a))ti+(ρ(b))ti,

Si=(ρ(a)ρ(b)ρ)2ui,

Xi=1/2(σ(aa))vi+(σ(bb))viρ4/3vi,

Yi=(σ(aa)+σ(bb)2σ(aa)σ(bb)ρ8/3)wi,

f=ni=1ωiRiSiXiYi,

G=ni=11/2ωi(ρ(s))ti(σ(ss))vi(σ(ss)(ρ(s))8/3)wi((ρ(s))4/3vi)1.

Density dependent first row exchange-correlation functional for closed shell systems. t=[7/6,4/3,3/2,5/3],

ω=[1.06141,0.898203,1.34439,0.302369],

n=4,

Ri=(ρ(a))ti+(ρ(b))ti,

f=ni=1ωiRi.

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).

J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003).

p=[0.98,0.3271,0.7035],

q=[0.003557,0.03229,0.007695],

r=[0.00625,0.02942,0.05153],

t=[0.00002354,0.002134,0.00003394],

u=[0.0001283,0.005452,0.001269],

v=[0.0003575,0.01578,0.001296],

α=[0.001867,0.005151,0.00305],

g=(ρ(s))4/3F(χ(s),zs,p1,q1,r1,t1,u1,v1,α1)+dsϵ(ρ(s),0)F(χ(s),zs,p2,q2,r2,t2,u2,v2,α2),

G=(ρ(s))4/3F(χ(s),zs,p1,q1,r1,t1,u1,v1,α1)+dsϵ(ρ(s),0)F(χ(s),zs,p2,q2,r2,t2,u2,v2,α2),

f=F(x,z,p3,q3,r3,t3,u3,v3,α3)(ϵ(ρ(a),ρ(b))ϵ(ρ(a),0)ϵ(ρ(b),0)),

x=(χ(a))2+(χ(b))2,

zs=τ(s)(ρ(s))5/3cf,

z=τ(a)(ρ(a))5/3+τ(b)(ρ(b))5/32cf,

ds=1(χ(s))24zs+4cf,

F(x,z,p,q,c,d,e,f,α)=pλ(x,z,α)+qx2+cz(λ(x,z,α))2+dx4+ex2z+fz2(λ(x,z,α))3,

λ(x,z,α)=1+α(x2+z),

cf=3/532/3(π2)2/3,

T=[0.031091,0.015545,0.016887],

U=[0.21370,0.20548,0.11125],

V=[7.5957,14.1189,10.357],

W=[3.5876,6.1977,3.6231],

X=[1.6382,3.3662,0.88026],

Y=[0.49294,0.62517,0.49671],

P=[1,1,1],

ϵ(α,β)=(α+β)(e(l(α,β),T1,U1,V1,W1,X1,Y1,P1)e(l(α,β),T3,U3,V3,W3,X3,Y3,P3)ω(ζ(α,β))(1(ζ(α,β))4)c+(e(l(α,β),T2,U2,V2,W2,X2,Y2,P2)e(l(α,β),T1,U1,V1,W1,X1,Y1,P1))ω(ζ(α,β))(ζ(α,β))4),

l(α,β)=1/43342/331π(α+β),

ζ(α,β)=αβα+β,

ω(z)=(1+z)4/3+(1z)4/322322,

e(r,t,u,v,w,x,y,p)=2t(1+ur)ln(1+1/21t(vr+wr+xr3/2+yrp+1)),

c=1.709921.

Automatically generated von Weizsäcker kinetic energy. g=cσ(ss)ρ(s),

G=cσ(ss)ρ(s),

c=1/8.

VWN 1980(III) functional x=1/46345/661πρ,

ζ=ρ(a)ρ(b)ρ,

f=ρe,

k=[0.0310907,0.01554535,1/6π2],

l=[0.409286,0.743294,0.228344],

m=[13.0720,20.1231,1.06835],

n=[42.7198,101.578,11.4813],

e=Λ+z(λΛ),

y=98(1+ζ)4/3+98(1ζ)4/39/4,

Λ=q(k1,l1,m1,n1),

λ=q(k2,l2,m2,n2),

q(A,p,c,d)=A(ln(x2X(x,c,d))+2carctan(Q(c,d)2x+c)(Q(c,d))1cp(ln((xp)2X(x,c,d))+2(c+2p)arctan(Q(c,d)2x+c)(Q(c,d))1)(X(p,c,d))1),

Q(c,d)=4dc2,

X(i,c,d)=i2+ci+d,

z=4y9329.

VWN 1980(V) functional. The fitting parameters for Δεc(rs,ζ)V appear in the caption of table 7 in the reference. x=1/46345/661πρ,

ζ=ρ(a)ρ(b)ρ,

f=ρe,

k=[0.0310907,0.01554535,1/6π2],

l=[0.10498,0.325,0.0047584],

m=[3.72744,7.06042,1.13107],

n=[12.9352,18.0578,13.0045],

e=Λ+αy(1+hζ4),

y=98(1+ζ)4/3+98(1ζ)4/39/4,

h=4/9λΛ(321)α1,

Λ=q(k1,l1,m1,n1),

λ=q(k2,l2,m2,n2),

α=q(k3,l3,m3,n3),

q(A,p,c,d)=A(ln(x2X(x,c,d))+2carctan(Q(c,d)2x+c)(Q(c,d))1cp(ln((xp)2X(x,c,d))+2(c+2p)arctan(Q(c,d)2x+c)(Q(c,d))1)(X(p,c,d))1),

Q(c,d)=4dc2,

X(i,c,d)=i2+ci+d.

Here it means M05 exchange-correlation part which excludes HF exact exchange term. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Phys. 123, 161103 (2005).

Here it means M05-2X exchange-correlation part which excludes HF exact exchange term. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. 2, 364 (2006).

Here it means M06 exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

Here it means M06-2X exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

Here it means M06-HF exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A 110, 13126 (2006).

Y. Zhao and D. G. Truhlar, J. Chem. Phys. 125, 194101 (2006).

Here it means M08-HX exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).

Here it means M08-SO exchange-correlation part which excludes HF exact exchange term. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. 4, 1849 (2008).

R. Peverati and D. G. Truhlar, Journal of Physical Chemistry Letters 3, 117 (2012).

Y. Zhao and D. G. Truhlar, J. Chem. Phys. 128, 184109 (2008).

R. Peverati, Y. Zhao and D. G. Truhlar, J. Phys. Chem. Lett. 2 (16), 1991 (2011).

Here it means SOGGA11-X exchange-correlation part which excludes HF exact exchange term. R. Peverati and D. G. Truhlar, J. Chem. Phys. 135, 191102 (2011).