[molpro-user] how to find the data of spin orbit coupling constant
郭建东
guojiandong13 at mails.ucas.ac.cn
Thu Apr 21 02:58:41 CEST 2016
Dear molpro-user,
Recently, I conduct the spin orbit coupling constant calculation using molpro software package. I am interested in how the singlet state jumps to the triplet state via spin orbit coupling and what is the probability of this event. The partial output file is below. How to find the spin orbit coupling constant in the following output file?
Any help would be appreciated.
Best regards
Spin-Orbit Matrix (CM-1)
========================
Nr State S SZ 1 2 3 4
1 1.1 0.0 0.0 0.00 15.44 0.00 15.44
0.00 68.34 -0.84 -68.34
2 1.1 1.0 1.0 15.44 4739.37 0.00 0.00
-68.34 0.00 0.00 0.00
3 1.1 1.0 0.0 0.00 0.00 4739.37 0.00
0.84 0.00 0.00 0.00
4 1.1 1.0 -1.0 15.44 0.00 0.00 4739.37
68.34 0.00 0.00 0.00
Spin-orbit calculation in the basis of symmetry adapted wave functions
======================================================================
>>> Hamiltonian transformed to symmetry adapted basis <<<
Results for symmetry 1
======================
=> Spin-Orbit Matrixblock (CM-1) (dimension: 4)
The diagonal matrixelements are shifted by -1976.35795600 a.u.
State Sym Spin / Nr. 1 2 3 4
1 1 |0 0> 0.000 21.842 0.000 0.000
0.000 0.000 -0.835 96.648
1 1 |1 1>+ 21.842 4739.371 0.000 0.000
0.000 0.000 0.000 0.000
1 1 |1 0> 0.000 0.000 4739.371 0.000
0.835 0.000 0.000 0.000
1 1 |1 1>- 0.000 0.000 0.000 4739.371
-96.648 0.000 0.000 0.000
=> Eigenvalues of spin-orbit matrix in ascending order (E0 = Emin,ges)
(symmetry = 1)
Nr E E-E0 E-E0 E-E(1) E-E(1) E-E(1)
(au) (au) (cm-1) (au) (cm-1) (eV)
1 -1976.35796543 -0.00000944 -2.07 0.00000000 0.00 0.0000
2 -1976.33636184 0.02159416 4739.37 0.02160360 4741.44 0.5879
3 -1976.33636184 0.02159416 4739.37 0.02160360 4741.44 0.5879
4 -1976.33635240 0.02160360 4741.44 0.02161303 4743.51 0.5881
=> Eigenvectors of spin-orbit matrix columnwise and corresponding to the
eigenvalues in ascending order (symmetry = 1)
Basis states Eigenvectors (columnwise)
State Sym Spin / Nr. 1 2 3 4
1 1 |0 0> 0.99978170 0.00000000 0.00000000 -0.02089387
0.00000000 0.00000000 0.00000000 0.00000000
1 1 |1 1>+ -0.00460569 0.77547152 -0.59156726 -0.22038433
0.00000000 0.00122329 0.01000706 0.00000000
1 1 |1 0> 0.00000000 0.60652471 0.79498597 0.00000000
-0.00017607 0.00423510 -0.00601055 -0.00842513
1 1 |1 1>- 0.00000000 0.00496379 0.00460693 0.00000000
0.02037916 0.17529297 -0.13374599 0.97515292
Summary of SO results
=====================
Eigenvalues of the spin-orbit matrix
....................................
Nr Sym E E-E0 E-E0 E-E(1) E-E(1) E-E(1)
(au) (au) (cm-1) (au) (cm-1) (eV)
1 1 -1976.35796543 -0.00000944 -2.07 0.00000000 0.00 0.0000
2 1 -1976.33636184 0.02159416 4739.37 0.02160360 4741.44 0.5879
3 1 -1976.33636184 0.02159416 4739.37 0.02160360 4741.44 0.5879
4 1 -1976.33635240 0.02160360 4741.44 0.02161303 4743.51 0.5881
E0 = -1976.35795600 is the energy of the lowest zeroth-order state
E1 = -1976.35796543 is the energy of the lowest SO-state
Spin-orbit eigenvectors (columnwise and corresponding to the eigenvalues in ascending order)
.......................
Basis states Eigenvectors (columnwise)
Total
Nr Sym State Sym Spin / Nr. 1 2 3 4
1 1 1 1 |0 0> 0.99978170 0.00000000 0.00000000 -0.02089387
0.00000000 0.00000000 0.00000000 0.00000000
2 1 1 1 |1 1>+ -0.00460569 0.77547152 -0.59156726 -0.22038433
0.00000000 0.00122329 0.01000706 0.00000000
3 1 1 1 |1 0> 0.00000000 0.60652471 0.79498597 0.00000000
-0.00017607 0.00423510 -0.00601055 -0.00842513
4 1 1 1 |1 1>- 0.00000000 0.00496379 0.00460693 0.00000000
0.02037916 0.17529297 -0.13374599 0.97515292
Composition of spin-orbit eigenvectors
======================================
Total
Nr Sym State Sym Spin / Nr. 1 2 3 4
1 1 1 1 |0 0> 99.96% 0.00% 0.00% 0.04%
2 1 1 1 |1 1>+ 0.00% 60.14% 35.01% 4.86%
3 1 1 1 |1 0> 0.00% 36.79% 63.20% 0.01%
4 1 1 1 |1 1>- 0.04% 3.08% 1.79% 95.09%
-------------- next part --------------
An HTML attachment was scrubbed...
URL: <http://www.molpro.net/pipermail/molpro-user/attachments/20160421/3dc2e86b/attachment.html>
More information about the Molpro-user
mailing list