[molpro-user] *** [SPAM] *** Re: Atom excitation energies and transition moments

Tatiana Korona tania at tiger.chem.uw.edu.pl
Sun Aug 6 00:50:46 CEST 2017


Dear Pablo,

Try eom,-10.2 instead of eom,2.2

When you add more basis functions, some states become available, which were 
artifically high (or did not exist at all) in the smaller basis. E.g. your state 
2.2 from avtz is a state dominated by double excitation

   Results for state  2.2: Excitation energy         2.24667136 au       61.135 
eV      493087.37 cm-1

   Coefficient     Excitation
     -0.87537      1.1 ->  1.2     1.1 ->  2.1

This state becomes 3.2 in avqz etc.:

   Results for state  3.2: Excitation energy         2.24446206 au       61.075 
eV      492602.48 cm-1

   Coefficient     Excitation
      0.89691      1.1 ->  1.2     1.1 ->  2.1

Best wishes,

Tatiana


  On Sat, 5 Aug 2017, Pablo Avaria wrote:

> Dear Tatiana,
> thank you for your reply.I noticed that the eom-ccsd results depend on the basis set used.For example, for 2.2 state for He
>          excit. en.    right dipole trans.
>  avtz  2.24               -0.18
> avqz  1.89               -0.48
> av5z  1.67                0.51
> av6z  1.51                0.52
> tav6z 0.85                0.28
>
>
> Just in case my input:
>  memory,50,m basis=av6z                                                                      geometry={he}                                                                   
>  hf                                                                            ccsd                                                                             eom,2.2,trans=1                                                                  
> Am I doing anything wrong?
> Pablo
>
>
>
>
>    On Friday, August 4, 2017 5:56 PM, Tatiana Korona <tania at tiger.chem.uw.edu.pl> wrote:
>
>
> Dear Pablo,
>
> If you want to interpret excited states in EOM-CCSD in more detail, first you
> can look at main excitations given in the form n.sym1 -> r.sym2 (for single
> excitations), so you can interpret your 3.1 state according to the main
> excitations listed under the excitation energy in the output. It is of course
> sensible to print or save virtual orbitals, too, in order to recognize what type
> of the orbital stays under "r.sym2".
>
> You can also make a population (or natural-orbital) analysis of the
> excited-state density, see $molpro/example/hf_eom_prop.com
>
> or save densities in the CUBE format
>
> memory,2,m
> gthresh,twoint=1.e-14,energy=1.d-8
> gprint,orbital=10
> basis=avdz
>
> geometry={
> O
> H1,O,r
> H2,O,r,H1,th
> }
>
> ! MP2/vtz optimization:
> r=0.959 Ang
> th=103.5
>
> {hf
> save,2100.2}
>
> {ccsd
> dm,6000.2
> eom,-5.1,-4.2,-4.3,-4.4,trans=1
> }
>
>
> cube,water11.cube;density,record=6000.2,state=1.1
> cube,water23.cube;density,record=6000.2,state=2.3
>
>
> and then use e.g. Gabedit to visualize the difference density (den2.3-den1.1).
>
> Best wishes,
>
> Tatiana
>
>
>   On Thu, 3 Aug 2017, Pablo Avaria wrote:
>
>> Hello,
>>
>>
>>
>> I need to calculate the excitation energies, dipole and quadrupole transitions moments
>> between ground and excited states as well as between different excited states for an atom.First I ran some tests for He atom. 
>>
>> The EOM-CCSD method with the card "eom,-5.1,start=6000.2,save=6000.2,trans=1"
>> gives the following excitation energies: Results for state  2.1: 20.936 eV Results for state  3.1: 37.788 eV
>> The first one looks likes the optical forbidden transition 1s^2 1S - 1s2s 1S What about the state 3.1?
>> The TD-DFT method with the card "df-tddft,orb=2100.2,nexcit=10"gives the following values 25.997 eV and 40.775 eV which I am not able to interpret. 
>> Are these methods applicable for my problem?Or should I use define each state manually with occ-closed-wf commands and use a method like CASSCF?
>> Would it possible to get an example, let's say for dipole-allowed 1s^2 1S - 1s2p 1P transition?Thank you in advance for you help!
>> Pablo
>>
>>
>
> Dr. Tatiana Korona http://tiger.chem.uw.edu.pl/staff/tania/index.html
> Quantum Chemistry Laboratory, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, POLAND
>
>

Dr. Tatiana Korona http://tiger.chem.uw.edu.pl/staff/tania/index.html
Quantum Chemistry Laboratory, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, POLAND


More information about the Molpro-user mailing list